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ADAPTIVE BAYESIAN ESTIMATION OF DISCRETE-CONTINUOUS DISTRIBUTIONS

UNDER SMOOTHNESS AND SPARSITY

Andriy Norets1

and Justinas Pelenis

We consider nonparametric estimation of a mixed discrete-continuous distri-

bution under anisotropic smoothness conditions and possibly increasing number

of support points for the discrete part of the distribution. For these settings, we

derive lower bounds on the estimation rates. Next, we consider a nonparametric

mixture of normals model that uses continuous latent variables for the discrete

part of the observations. We show that the posterior in this model contracts

at rates that are equal to the derived lower bounds up to a log factor. Thus,

Bayesian mixture of normals models can be used for (up to a log factor) optimal

adaptive estimation of mixed discrete-continuous distributions. The proposed

model demonstrates excellent performance in simulations mimicking first stage

estimation of structural discrete choice models.

Keywords: Bayesian nonparametrics, adaptive rates, minimax rates, anisotropic

smoothness, posterior contraction, discrete-continuous distribution, mixed scale,

mixtures of normal distributions, latent variables, discrete choice models.

.

1. INTRODUCTION

Nonparametric estimation methods have become more accessible and useful in empirical

work due to availability of fast computers and very large datasets. The theory and practical

implementation of nonparametric methods for continuous data are very well developed at

this point. However, in most economic applications, the data contain both continuous and

discrete variables. Nonparametric methods for multivariate discrete and mixed discrete-

continuous distributions and their theoretical properties are less well understood and

developed. We address this issue in the present paper.

The standard flexible approach to estimation of discrete distributions is to use sample

frequencies as estimators of the corresponding probabilities. When the number of values

that discrete variables can take is larger or comparable to the sample size, which we call

here sparsity following Hall and Titterington (1987), the standard frequency estimators

perform poorly. The sparsity in the multivariate case is rather a rule than an exception;
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for example, estimating a joint distribution of 5 discrete variables each taking 10 values

would involve estimation of 105 probabilities by corresponding sample frequencies. The

presence of continuous variables in addition to the discrete ones further exacerbates the

problem. In economics, these issues often arise in the context of estimation of single-agent

and game-theoretic static and dynamic discrete choice models. Popular two stage esti-

mation procedures for these models pioneered by Hotz and Miller (1993) (and further

developed by Aguirregabiria and Mira (2002), Pesendorfer and Schmidt-Dengler (2008),

Bajari, Benkard, and Levin (2007) and Pakes, Ostrovsky, and Berry (2007) among oth-

ers) deal with discrete dependent variables such as market entry decisions and discrete

covariates such as the number of entrants currently in the market. A natural solution to

this problem that appears to work well in practice (Aitchison and Aitken (1976), Li and

Racine (2007), and the aforementioned references to the two stage discrete choice model

estimation) is to smooth discrete data, hoping that probabilities at nearby discrete values

are close or smoooth in some sense and that one could learn about a probability of a

certain value from observations at nearby values. Of course, smoothing can only be ben-

eficial if the underlying data have certain smoothness properties. Ideally, a procedure for

estimation of discrete distributions should be able to optimally take advantage of smooth-

ness in the data generating process if it is present and at the same time perform no worse

than the standard frequency estimators if the data generating process is not (sufficiently)

smooth.

In this paper, we formalize these ideas for multivariate mixed discrete-continuous dis-

tributions by setting up an asymptotic framework where the multivariate discrete part

of the data generating distribution can have either a large or a small number of support

points and it can be either very smooth or not, and these characteristics can differ from

one discrete coordinate to another. In these settings, we derive optimal minimax rates

for estimation of discrete-continuous distributions. We show that smoothing is beneficial

only for a subset of discrete variables with a quickly growing number of support points

and/or sufficiently high level of smoothness.

We propose an estimation procedure that adaptively (without a priori knowledge of

smoothness levels of the data generating process) achieve the derived optimal convergence

rates. The procedure is based on a Bayesian mixture of multivariate normal distributions.

Mixture models have proven to be very useful for Bayesian nonparametric modeling of

univariate and multivariate distributions of continuous variables. These models possess
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outstanding asymptotic frequentist properties: in Bayesian nonparametric estimation of

smooth densities the posterior in these models contracts at optimal adaptive rates up to

a log factor (Rousseau (2010), Kruijer et al. (2010), Shen, Tokdar, and Ghosal (2013)).

Tractable Markov chain Monte Carlo (MCMC) algorithms for exploring posterior distri-

butions of these models are available (Escobar and West (1995), MacEachern and Muller

(1998), Neal (2000), Miller and Harrison (2017), Norets (2020)) and they are widely used

in empirical work (see Dey, Muller, and Sinha (1998), Chamberlain and Hirano (1999),

Burda, Harding, and Hausman (2008), Chib and Greenberg (2010), and Jensen and Maheu

(2014) among many others).

From the computational perspective, discrete variables can be easily accommodated

through the use of continuous latent variables in Bayesian MCMC estimation (Albert

and Chib (1993), McCulloch and Rossi (1994)). In nonparametric modelling of discrete-

continuous data by mixtures, latent variables were used by Canale and Dunson (2011) and

Norets and Pelenis (2012) among others. Some results on frequentist asymptotic proper-

ties of the posterior distribution in such models have also been established. Norets and

Pelenis (2012) obtained approximation results in Kullback-Leibler distance and weak pos-

terior consistency for mixture models with a prior on the number of mixture components.

DeYoreo and Kottas (2017) establish weak posterior consistency for Dirichlet process mix-

tures. In similar settings, Canale and Dunson (2015) derived posterior contraction rates

that are not optimal. In the present paper, we show that a mixture of normals model

with a prior on the number of mixture components that uses latent variables for mod-

eling the discrete part of the distribution can deliver optimal posterior contraction rates

for nonparametric estimation of discrete-continuous distributions. The obtained optimal

posterior contraction rates are adaptive since the priors we consider do not depend on the

size of the support and the smoothness of the data generating process.

We illustrate our theoretical results in an application to the first stage estimation of

discrete choice models briefly mentioned above. Specifically, we use data from Monte

Carlo experiments in Pakes, Ostrovsky, and Berry (2007) who compare various two stage

estimation procedures on a model of firm’s entry decisions. Our procedure delivers 2.5

times reduction in the estimation error relative to the frequency estimator. Overall, our

theoretical and simulation results suggest that models for discrete data based on mixtures

and latent variables should be an important part of the econometric toolkit.

The rest of the paper is organized as follows. In Section 2, we describe our framework
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and the Bayesian model. Section 3 presents simulation results and favorable comparisons

with frequency and kernel estimators. The asymptotic theoretical results are presented

in Section 4. MCMC algorithm for model estimation and proof outlines are given in

Appendices. Auxiliary results and proof details are delegated to the online supplement.

2. DATA GENERATING PROCESS AND BAYESIAN MODEL

Let us denote the continuous part of observations by x ∈ X ⊂ Rdx and the discrete

part by y = (y1, . . . , ydy) ∈ Y , where

Y =

dy∏
j=1

Yj, with Yj =

{
1− 1/2

Nj

,
2− 1/2

Nj

, . . . ,
Nj − 1/2

Nj

}
,

is a grid on [0, 1]dy (a product symbol Π applied to sets hereafter denotes a Cartesian

product). The number of values that the discrete coordinates yj can take, Nj, can po-

tentially grow with the sample size or stay constant. For each discrete coordinate value

yj ∈ Yj, let

Ayj =


(−∞, yj + 0.5/Nj] if yj = 0.5/Nj

(yj − 0.5/Nj,∞) if yj = 1− 0.5/Nj

(yj − 0.5/Nj, yj + 0.5/Nj] otherwise

be an interval that includes yj and has a length of 1/Nj, except for the first and the

last intervals that are expanded to include the rest of the negative and positive parts

of the real line correspondingly. Then, every value of the discrete part of observations

y = (y1, . . . , ydy) ∈ Y can be associated with a hyper-rectangle Ay =
∏dy

j=1Ayj . Let us

represent the data generating density-probability mass function p0(y, x) as an integral of

a latent density f0 over Ay,

(1) p0(y, x) =

∫
Ay

f0(ỹ, x)dỹ,

where f0 belongs to D, the set of probability density functions on Rd with respect to the

Lebesgue measure, and d = dx + dy. The representation of a mixed discrete-continuous

distribution in (1) is so far without a loss of generality since for any given p0 one could

always define f0 using a mixture of densities with non-overlapping supports included in

Ay, y ∈ Y .

We assume that the data available for estimation of p0 are comprised of n independently

identically distributed observations from p0: (Y n, Xn) = (Y1, X1, . . . , Yn, Xn). Let P0, E0,
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P n
0 , and En

0 denote the probability measures and expectations corresponding to p0 and

its product pn0 .

When Nj’s grow with the sample size n the generality of the representation in (1) can

be lost when assumptions such as smoothness are imposed on f0. Nevertheless, in what

follows we do allow for f0 to be smooth. The interpretation of the smoothness is that the

values of discrete variables can be ordered and that borrowing of information from nearby

discrete points can be useful in estimation.

2.1. Bayesian Model

Our nonparametric Bayesian model for the data generating process in (1) is based on a

mixture of normal distributions with a variable number of components for modelling the

joint distribution of (ỹ, x),

f(ỹ, x|θ,m) =
m∑
k=1

αkφ(ỹ, x;µk, σ · ν−1/2
k )

p(y, x|θ,m) =

∫
Ay

f(ỹ, x|θ,m)dỹ,(2)

where θ = (µk, νk, αk, k = 1, 2, . . . ;σ) and φ(·;µk, σ · ν−1/2
k ) denotes a multivariate normal

density with mean µk ∈ Rd and a diagonal covariance matrix with the squared elements

of vector σ · ν−1/2
k = (σ1ν

−1/2
k1 , . . . , σdν

−1/2
kd ) on the diagonal.

We use the following prior for (θ,m). The prior for (α1, . . . , αm) conditional on m is

Dirichlet(a/m, . . . , a/m), a > 0. It is a standard conjugate prior for discrete probability

distributions, see, for example, Chamberlain and Imbens (2003) for applications in econo-

metrics. The prior probability mass function for the number of mixture components m is

(3) Π(m) ∝ e−a10m(logm)τ1 ,m = 1, 2, . . . , a10 > 0, τ1 ≥ 0,

where ∝ means “proportional to”. The exponential tails of Π(m) attain a tradeoff between

putting just enough prior probability on the relevant finite mixture approximations of f0

and putting appropriately small prior probabilities on rough mixtures that would overfit

the data.

A popular alternative to specifying a prior on m and (α1, . . . , αm) is a Dirichlet process

mixture (m is set to infinity and a “stick-breaking” prior (Sethuraman (1994)) is used for

the infinite sequence of mixing weights (α1, . . .)). This prior would deliver the same poste-

rior contraction rates for continuous variables or settings where smoothing is important;
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however, when smoothing is not beneficial, the Dirichlet process mixture prior does not

seem to put sufficient weight on the relevant finite mixture approximations, and, hence,

we focus on the mixtures of finite mixtures here.

The component specific scale parameters νk are not necessary for asymptotic results;

it is a common practice in the literature to include them (see, for example, Geweke

(2005)) and they seem to improve the finite sample performance. We use independent

conditionally conjugate gamma-normal priors for (µkj, νkj). The common scale parameters

σ are required to ensure that the prior puts sufficient probability on small values of the

variances of all mixture components at once (the variances play a role of the bandwidth

in asymptotic results). We use independent inverse Gamma priors for the components

of σ. A detailed description of the model, priors, and the MCMC algorithm for model

estimation is given in Appendix A. Section 4.3.1 provides more general conditions on the

prior that deliver adaptive posterior contraction rates for the model in (2).

3. APPLICATION

In applied economics literature, nonparametric estimation of multivariate discrete or

mixed discrete-continuous distributions is often used in the first stage of two stage estima-

tion procedures for structural discrete choice models. Pakes, Ostrovsky, and Berry (2007)

compare various two stage estimation procedures on a model of firm’s entry decisions.

Their Monte Carlo experiments provide convenient and realistic settings for demonstrat-

ing the performance of the mixture based models in practice.

The first stage in Pakes et al. (2007) requires estimation of entry and exit probabilities

conditional on the number of entrants currently in the market and a discretized market

size measure. These conditional probabilities are essentially obtained from the standard

frequency estimator of the joint distribution for the four-dimensional vector of discrete

random variables: the market size, the number of firms currently in the market, the

number of new entrants, and the number of exiting firms. In what follows, we use the

simulated data from Pakes et al. (2007) to compare our estimator with the standard

frequency estimator and a classical kernel estimator with special discrete kernels from

a publicly available R package np (Hayfield and Racine (2008)). The kernel bandwidth

parameters are selected in the package by cross-validation as described in Li and Racine

(2003); the latter authors provide simulation evidence that their methods outperform

several other alternatives in the classical literature; the package np implements a wide

variety of nonparametric methods presented in a textbook on nonparametric econometrics
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by Li and Racine (2007).

Pakes et al. (2007) simulate a structural entry exit model to obtain one million draws for

their Monte Carlo experiments. We use this one million simulated draws as a population

distribution to estimate. The support of this population distribution consists of 2617

values of the four dimensional random vectors. The marginal population distributions of

each vector component are depicted in Figure 1. From this population, we draw 50 random

samples of size n = 500 (Pakes et al. (2007) use n = 250 and n = 1000 in their Monte Carlo

experiments). For each sample, we compute the standard frequency estimator, the kernel

estimator, and the mixture model estimators for a fixed m ∈ {1, . . . , 30} and a variable

m. The MCMC algorithm for the fixed m model is standard in the literature (Diebolt

and Robert (1994)). For the variable m model, we implemented two MCMC algorithms:

an adaptation of a split-merge algorithm for Dirichlet process mixtures from Jain and

Neal (2004) and an approximately optimal reversible jump algorithm from Norets (2020);

they produce the same estimation results in the Monte Carlo experiments but the latter

algorithm converges much faster. The reversible jump algorithm is described in detail in

Appendix A.

0 10 20 30 40
0.02

0.025

0.03

0.035

0.04
Market Size

0 5 10 15 20
0

0.05

0.1

0.15

Current Number of Firms
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0

0.5
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Number of Entrants

0 1 2 3
0

0.5

1
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Figure 1.— Marginal population distributions
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Figure 2.— MCMC trace plot and prior and posterior of m

Figure 2 presents the reversible jump MCMC draws and the prior and the posterior

distributions of m for one of the samples used in Monte Carlo experiments. Estimation

results for the fixed and variable m models are obtained from 10,000 and 50,000 MCMC

draws correspondingly, as MCMC convergence is slower for the variable m models. As can

be seen from the MCMC trace plot in the figure, the posterior simulator reliably explores

the posterior distribution; MCMC results for other samples are similar.

The priors used in estimation experiments are roughly based on the first two sample

moments: the prior for the location parameter µkj is centered at the corresponding sample

average, Ȳj =
∑n

i=1 Yij/n and has variance equal to the sample variance, σ̂2
j =

∑n
i=1(Yij−

Ȳj)
2/n. The prior mode of the precision parameter σ−2

j is set to the inverse of the sample

variance, σ̂−2
j and its variance is set to 1. The component specific scale parameters have

prior mode and precision equal to 1. The Dirichlet parameter a is set to 15 and the prior

hyper-parameters for m, a10 = 0.5 and τ1 = 0. The estimation results are not sensitive to

moderate variation in prior hyper-parameters. These empirical Bayes priors are similar to

unit variance priors centered at 0 for location parameters and 1 for scale parameters used

in conjunction with standardized data.

The estimation errors in the total variation distance averaged over the 50 random

samples are presented in Figure 3.
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Figure 3.— Average Estimation Errors

As can be seen from the figure, the mixture based estimators match the average total

variation error of the frequency estimator with just two mixture components and that of

the kernel estimator with six mixture components. The use of a higher number of mixture

components and a variable number of components further reduces the estimation error.

The large improvements of both the kernel estimator and the mixture model over the

standard frequency estimator are not very surprising given the smooth appearance of the

probability mass functions in Figure 1, the sample size (n = 500), and the cardinality of

the population support, 2617. The mixture models outperform the kernel estimator on

average as shown in the figure and in each of the 50 random samples. Theoretical properties

(beyond the consistency and the asymptotic normality for a fixed discrete support) are

not known for the discrete kernel estimator in our asymptotic settings with smoothness

and a possibly growing support. Our conjecture is that at least without considerable

modifications this kernel estimator is unlikely to deliver the adaptive optimal estimation

rates that are established for mixture models in the following section; and, perhaps, that is

why the kernel estimator is outperformed by the mixture model in our simulations. A few

other applications and favorable comparisons of a fixed m mixture model with standard

parametric and nonparametric alternatives can be found in Norets and Pelenis (2012).

The performance of the variable m model is practically the same as the performance

of models with large fixed m. Somewhat unexpectedly, the estimation results for the

models with fixed m do not deteriorate when m is large (m = 30). The estimation error

in the total variation distance is slightly more volatile for larger m, but on average, the
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errors decrease in m as can be seen in Figure 3. Of course, the performance can be easily

evaluated in simulation settings, when the data generating process is known. As far as we

are aware, theoretically justified Bayesian procedures for choosing a fixed m have not been

developed in nonparametric settings. Hence, the variable m model with the asymptotic

guarantees obtained in the present paper is the preferred option, and the fixed m models

should be used for sensitivity and robustness checks.

Overall, the Monte Carlo simulations presented in this section suggest that models for

discrete data based on mixtures and latent variables should be an important part of the

toolkit in empirical industrial organization and economics more generally. The following

section presents asymptotic results that further justify this claim from the theoretical

perspective.

4. ASYMPTOTIC FRAMEWORK AND RESULTS

To get more refined results and to accommodate discrete variables that are not ordered

or “smooth”, we allow Nj’s to grow at different rates for different j’s or to be constant

for some j’s. For the same reason, we work with anisotropic smoothness that allows for

existence of derivatives of different orders along different coordinates.

4.1. Anisotropic Smoothness

For each coordinate j ∈ {1, . . . , d}, we introduce a smoothness coefficient, βj > 0, such

that bβjc (the largest integer that is strictly smaller than βj) is the highest possible order

of the partial derivative with respect to the coordinate j. In the univariate case, bβjc’th
derivative is often assumed to satisfy a Holder condition with the exponent βj − bβjc to

accommodate noninteger smoothness coefficients and to deliver Taylor expansion approx-

imations with remainders of the appropriate order. Different generalizations of these ideas

to the multivariate case are possible. We introduce a generalization below that is suitable

for our purposes. Let Z+ denote the set of non-negative integers. For smoothness coeffi-

cients (β1, . . . , βd) and an envelope constant L, an anisotropic (β1, . . . , βd)-Holder class,

Cβ1,...,βd,L, is defined as follows.

Definition 1 f ∈ Cβ1,...,βd,L if for any k = (k1, . . . , kd) ∈ Zd+,
∑d

l=1 kl/βl < 1, mixed

partial derivative of order k, Dkf , is finite and

(4) |Dkf(z + ∆z)−Dkf(z)| ≤ L
d∑
j=1

|∆zj|βj(1−
∑d
l=1 kl/βl),
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for any ∆z such that ∆zj = 0 when
∑d

l=1 kl/βl + 1/βj < 1.

In this definition, a Holder condition is imposed on Dkf for a coordinate j when Dkf

cannot be differentiated with respect to zj anymore (
∑d

l=1 kl/βl < 1 but
∑d

l=1 kl/βl +

1/βj ≥ 1). This definition slightly differs from definitions available in the literature on

anisotropic smoothness that we found. Section 13.2 in Schumaker (2007) presents some

very general anisotropic smoothness definitions but restricts attention to integer smooth-

ness coefficients. Ibragimov and Hasminskii (1984), and most of the literature on min-

imax rates under anisotropic smoothness that followed including Barron et al. (1999)

and Bhattacharya et al. (2014), do not restrict mixed derivatives. Shen et al. (2013) use

|∆zj|min(βj−kj ,1) instead of |∆zj|βj(1−
∑
l kl/βl) in (4). Their requirement is stronger than ours

for functions with bounded support, and it appears too strong for our derivation of lower

bounds on the estimation rate. However, our definition is sufficiently strong to obtain a

Taylor expansion with remainder terms that have the same order as those in Shen et al.

(2013) (while the definitions that do not restrict mixed derivatives do not deliver such an

expansion).

When βj = β, ∀j and
∑d

l=1 kl/β + 1/β ≥ 1, βj(1−
∑d

l=1 kl/βl) = β − bβc, and we get

the standard definition of β-Holder smoothness for the isotropic case.

The envelope L can be assumed to be a function of (z,∆z) to accommodate densi-

ties with unbounded support. We derive lower bounds on estimation rates for a constant

envelope function; the derived bounds are applicable to functions with non-constant en-

velops as a constant envelop is just a special case of a non-constant one. Upper bounds

on posterior contraction rates are derived under more general assumptions on L.

4.2. Lower Bounds on Estimation Rates

For a class of probability distributions P , ζ is said to be a lower bound on the estimation

error in metric ρ if there exists a positive constant c independent of n such that

inf
p̂

sup
p∈P

P (ρ(p̂, p) ≥ ζ) ≥ c > 0.

This definition means that there does not exist an estimator that asymptotically delivers

an estimation error in ρ that is smaller than ζ for all data generating distributions in

P . If the estimation error for a given estimator for distributions in P matches (up to

a multiplicative constant) a lower bound for P , then this estimator is considered rate

optimal. A good introduction into the theory of lower bounds can be found in Tsybakov
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(2008). In this section, we present lower bounds for discrete continuous distributions that

are matched with upper bounds on estimation errors for the mixture based models in

Section 4.3.

We consider the following class of probability distributions: for a positive constant L,

let

(5) P =

{
p : p(y, x) =

∫
Ay

f(ỹ, x)dỹ, f ∈ Cβ1,...,βd,L ∩ D

}
.

To define our lower bounds we need the following additional notation. Let A denote a

collection of all subsets of indices for discrete coordinates {1, . . . , dy}. For J ∈ A, let

J c = {1, . . . , d} \ J and yJ denotes the sub-vector {yj, j ∈ J} for a vector y. Then,

NJ =
∏
j∈J

Nj

denotes the number of values a discrete subvector yJ can take and

βJc =

[∑
j∈Jc

β−1
j

]−1

denotes an aggregate smoothness coefficient for the subvector containing the coordinates

of the continuous part of observations x and the continuous latent variables ỹ with indices

in J c. For J = ∅ or J c = ∅, we set N∅ = 1, β∅ =∞, and β∅/(2β∅ + 1) = 1/2.

Theorem 1 For P defined in (5),

(6) Γn = min
J∈A

[
NJ

n

] βJc
2βJc+1

=

[
NJ∗

n

] βJc∗
2βJc∗

+1

multiplied by a positive constant is a lower bound on the estimation error in the total

variation distance.

One could recognize expression [NJ/n]
βJc

2βJc+1 in (6) as the standard estimation rate for

a card(J c)-dimensional density with anisotropic smoothness coefficients {βj, j ∈ J c} and

the sample size n/NJ (Ibragimov and Hasminskii (1984)). One way to interpret this is that

the density of {x, ỹj, j ∈ J c} conditional on yJ is {βj, j ∈ J c}-smooth and the number of

observations available for its estimation (observations with the same value of yJ) should be

of the order n/NJ ; also, the estimation rate for the marginal probability mass function for

yJ is [NJ/n]1/2, which is at least as fast as [NJ/n]
βJc

2βJc+1 . In this interpretation, smoothing
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is not performed over the discrete coordinates with indices in set J , and the lower bound

is obtained when J minimizes [NJ/n]
βJc

2βJc+1 . Thus, an estimator that delivers the rate in

(6) should, in a sense, optimally choose the subset of discrete variables over which to

perform smoothing.

It should be possible to extend the results on the lower bounds to other distances.

However, suitable sufficient conditions in the Bayesian nonparametrics literature for the

corresponding upper bounds appear to be currently available only for the total variation

distance (or the Hellinger distance, which is equivalent); hence, we focus on that distance

here.

The proof of Theorem 1 is given in Appendix B.

4.2.1. Related Literature on Lower Bounds

Let us briefly review most relevant results on lower bounds and place our results in that

context. The most closely related results on minimax rates for anisotropic continuous dis-

tributions are developed in Ibragimov and Hasminskii (1984). The minimax estimation

rates for mixed discrete continuous distributions appear to be studied first by Efromovich

(2011). He considers discrete variables with a fixed support and no smoothness assump-

tions on the discrete part of the distribution. He shows that in these settings the optimal

rates for discrete continuous distributions are equal to the optimal nonparametric rates

for the continuous part of the distribution. Relaxing the assumption of the fixed support

for the discrete part of the distribution is very desirable in nonparametric settings. It

has been commonly observed at least since Aitchison and Aitken (1976) that smoothing

discrete data in nonparametric estimation improves results in practice. Hall and Titter-

ington (1987) introduced an asymptotic framework that provided a precise theoretical

justification for improvements resulting from smoothing in the context of estimating a

univariate discrete distribution with a support that can grow with the sample size. In

their setup, the support is an ordered set and the probability mass function is β-smooth

(in a sense that analogs of β-order Taylor expansions hold). They show that in their

setup the minimax rate is the smaller one of the following two: (i) the optimal estimation

rate for a continuous density with the smoothness level β, n−β/(2β+1), and (ii) the rate of

convergence of the standard frequency estimator, (N/n)1/2, where N is the cardinality of

the support and n is the sample size. Hall and Titterington (1987) refer to their setup as

“Sparse Multinomial Data” since N can be larger than n and this is the reason we refer
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to sparsity in the title of the paper. Burman (1987) established similar results for β = 2.

Subsequent literature in multivariate settings (e.g., Dong and Simonoff (1995), Aerts et al.

(1997)) did not consider lower bounds but demonstrated that when the support of the

discrete distribution grows sufficiently fast then estimators that employ smoothing can

achieve the standard nonparametric rates for β-smooth densities on Rd, n−β/(2β+d).

We generalize the results of Hall and Titterington (1987) on lower bounds for univari-

ate discrete distributions to multivariate mixed discrete-continuous case and anisotropic

smoothness. Alternatively, our results can be viewed as a generalization of results in Efro-

movich (2011) to settings with anisotropic smoothness and potentially growing supports

for discrete variables.

4.3. Posterior Contraction Rates for a Mixture of Normals Model

4.3.1. Assumptions on Prior

The assumptions on the prior for model (2) in Section 2.1 can be slightly generalized

as follows. A priori, the components of µk, µkj, k = 1, . . . ,m, j = 1, . . . , d are assumed

independent from each other, other parameters, and across k. Prior density for µkj is

bounded below for some a12, τ2 > 0 by

(7) a11 exp(−a12|µkj|τ2),

and for some a13, τ3 > 0 and all sufficiently large µkj > 0,

(8) Π(µkj /∈ [−µ, µ]) ≤ e−a13µ
τ3 .

Normal priors for µkj satisfy these conditions.

For positive constants a1, a2, . . . , a9, for each j ∈ {1, . . . , d}, σj is assumed independent

of other parameters a priori and the prior satisfies

Π(σ−2
j ≥ s) ≤ a1e

−a2sa3 for all sufficiently large s > 0(9)

Π(σ−2
j < s) ≤ a4s

a5 for all sufficiently small s > 0(10)

Π{s < σ−2
j < s(1 + t)} ≥ a6s

a7ta8e−a9s
1/2

, s > 0, t ∈ (0, 1).(11)

The inverse Gamma prior for σi satisfies (9)-(11).

A prior on m that can be bounded above and below by functions in the form of the right

hand side of (3), possibly with different constants, would work; to simplify the notation
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we assume (3). We also set the component specific scale parameters νji to 1. An extension

of the posterior contraction results to variable νkj’s is straightforward, see, for example,

Theorem A.5 in Norets and Pati (2017) for continuous variables, and it is not presented

here for brevity.

4.3.2. Posterior Contraction Rates

This section presents upper bounds on the posterior contraction rates for the Bayesian

mixture model that match the lower bounds in Section 4.2 up to a log factor. That means

that the Bayesian mixture model deliver a rate optimal (up to a log) estimator for the data

generating process in (1) under our smoothness assumptions. The estimator is adaptive

since the prior and model specification do not depend on the smoothness of the data

generating density and the fineness of the support relative to the sample size. To simplify

the exposition we present the results below in Theorem 2 for the case when the data

generating latent density f0 has a bounded support.

Theorem 2 Assume the conditions on the prior in Sections 4.3.1. Suppose f0 ∈ Cβ1,...,βd,L

and f ≥ f0 ≥ f > 0 holds on the support of f0, where L, f , and f are finite positive con-

stants. Let

(12) εn = min
J∈A

[
NJ

n

]βJc/(2βJc+1)

(log n)tJ

where

tJ >
(
dJc + β−1

Jc + max{τ1, 1}
)
/
(
2 + β−1

Jc

)
+ max{0, (1− τ1)/2}

and τ1 is a parameter in the prior on m. Suppose also nε2n → ∞ and for J∗ that attains

the minimum in (12), NJ∗ = o(n1−ν) for some small ν > 0. Then, the posterior contracts

at the rate εn: there exists M̄ > 0 such that

Π
(
p : dTV (p, p0) > M̄εn|Y n, Xn

) Pn0→ 0.

As in Section 4.2, when J c = ∅, βJc can be defined to be infinity and βJc/(2βJc+1) = 1/2

in (12). The assumption NJ∗ = o(n1−ν) excludes the cases with very slow (non-polynomial)

rates as some parts of the proof require log(1/εn) to be of order log n.

The theorem is a special case of the results presented in Appendix C that can accommo-

date unbounded support for f0. The proof of Theorem 2 follows from the discussion of the

more general assumptions in the appendix as the bounded support case is used there to
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illustrate the assumptions. Similarly to other papers on posterior contraction for mixtures

of normal densities though, the more general sufficient conditions in the appendix require

subexponential tails for f0. The results for f0 with an unbounded support also require the

envelope function L in the smoothness definition to be comparable to f0.

The proof of the posterior contraction results is based on the general sufficient conditions

from Ghosal et al. (2000). It exploits approximations of smooth densities by mixtures

of normal distributions developed in the Bayesian nonparametrics literature (Rousseau

(2010), Kruijer et al. (2010), de Jonge and van Zanten (2010), and Shen, Tokdar, and

Ghosal (2013)) and also develops appropriate approximations for nonsmooth discrete

distributions. Posterior contraction rates for nonparametric density estimation by mixture

models derived in the aforementioned papers also include a log factor similar to (log n)tJ

in (12). It is not known in the literature whether the log factor can be avoided; however,

it is not a very important issue as the log factor is negligible compared to the polynomial

part of the rate.

The results on the upper bounds in this section and lower bounds in Section 4.2 also hold

for the data generating processes where f0 is not smooth at all in some discrete coordinates.

The resulting rates can be obtained from those we derive by setting the corresponding

coordinates in β to (values arbitrarily close to) zero in (6), so that for the optimal rate,

smoothing is effectively not performed for these coordinates. Thus, the proposed Bayesian

model achieves the objective outlined in the introduction: it optimally takes advantage of

smoothness in the data generating process if it is present and at the same time performs

no worse than the standard frequency estimators if the data generating process is not

(sufficiently) smooth. Simulations in Section 3 suggest that the model performs better in

practice than available parametric and nonparametric alternatives and appears to live up

to its excellent theoretical properties.

5. FUTURE WORK

In many applications, conditional rather than joint distributions are actually of interest.

Of course, one could always estimate the joint distribution and then extract the conditional

distributions of interest. When the smoothness of the joint and conditional distributions

is the same then rate optimality of joint distribution estimator implies rate optimality

for the corresponding conditional distribution estimator. However, when the conditional

distribution is smoother then it could be beneficial to estimate the conditional distribution

directly. In an ongoing work, we pursue an extension of our posterior contraction results

ectaart.cls ver. 2006/04/11 file: paper.tex date: December 11, 2020



17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

to conditional distribution models based on covariate dependent mixtures; the extension

is similar to work by Norets and Pati (2017) on continuous distributions.

It would also be of interest to understand if other Bayesian nonparametric models (for

example, those based on Gaussian process priors) or classical nonparametric methods

based on higher order kernels or orthogonal series expansions can deliver estimators with

adaptive optimal convergence rates in our asymptotic framework.
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APPENDIX A: MODEL, PRIORS, AND MCMC ALGORITHM

A.1. Model and Priors

For the MCMC implementation and description, it is convenient to formulate the model

in (2) using mixture allocation latent variables (Diebolt and Robert (1994)), (s1, . . . , sn),

latent variables (Ỹ1, . . . , Ỹn) corresponding to discrete observations, and precision param-

eters hj = σ−2
j so that for each observation index i ∈ {1, . . . , n} and mixture component

index k ∈ {1, . . . ,m},

(Ỹi, Xi)|si = k, µk, h, νj,m ∼ φ
(
·;µk, (h−1/2

1 ν
−1/2
k1 , . . . , h

−1/2
d ν

−1/2
kd )

)
,

p(si = k|θ,m) = αk.

The joint distribution of observables and unobservables in the model is

p
(
Yi, Ỹi, Xi, si, i = 1, . . . , n;µ1, ν1, . . . , µm, νm;h,m

)
=(13)

n∏
i=1

1{Ỹi ∈ AYi}φ
(
Ỹi, Xi;µsi , (h

−1/2
1 ν

−1/2
si1

, . . . , h
−1/2
d ν

−1/2
sid

)
)
αsi

· Π(α1, . . . , αm|m) ·
d∏
j=1

Π(hj)
m∏
k=1

Π(µkj|νkj)Π(νkj) · Π(m).

The common precision parameter, hj, is a priori distributed as a square of a gamma

distributed random variable with shape Ahj and rate Bhj
, which is consistent with the

conditions in Section 4.3.1:

Π(hj) ∝ h
Ahj

/2−1

j e
−Bhj ·h

1/2
j .

The priors for (νkj, µkj) are conditionally conjugate gamma-normal:

Π(νkj) ∝ ν
Aνj
−1

kj e
−Bνj ·νkj ,

Π(µkj|νkj) ∝ ν
1/2
kj e

−0.5hµj
νkj(µkj−µj)

2

.

The priors for mixing weights and m are as described in Section 2.1:

Π(α1, . . . , αm|m) ∝
m∏
k=1

α
a/m−1
k ,

Π(m) ∝ e−a10m(logm)τ1 .
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A.2. MCMC Algorithm

We develop a Metropolis-within-Gibbs algorithm (Metropolis et al. (1953)) with a re-

versible jump step for m (Green (1995)) for exploring the posterior distribution. See,

for example, Chib and Greenberg (1995) for an introduction to Metropolis-Hastings al-

gorithm, Smith and Roberts (1993) for an introduction to Gibbs sampling, or Geweke

(2005) for a textbook treatment of MCMC algorithms in general and for mixture models

in particular.

Conditional on m, the distributions for the Gibbs sampler blocks of the parameters and

the latent variables are proportional to (13) and can be written as follows:

Ỹij| . . . ∼ φ
(
Ỹij;µsij, h

−1/2
j ν

−1/2
sij

)
· 1{Ỹij ∈ AYij} (truncated normal)

p(si = k| . . .) ∝ φ
(
Ỹi, Xi;µk, (h

−1/2
1 ν

−1/2
k1 , . . . , h

−1/2
d ν

−1/2
kd )

)
αk (multinomial)

p(α1, . . . , αm| . . .) ∝
m∏
k=1

α
a/m+

∑n
i=1 1{si=k}−1

k (Dirichlet)

p(µkj, νkj| . . .) ∝ ν
Āνj−1/2

kj e−B̄νj ·νkj−0.5h̄µj νkj(µkj−µ̄j)
2

(gamma-normal)

with parameters

h̄µj = hµj + hj ·
n∑
i=1

1{si = k}, µ̄j = h̄−1
µj

[hµjµj + hj ·
∑
i: si=k

Ỹij],

Āνj = Aνj + 0.5
n∑
i=1

1{si = k}, B̄νj = Bνj
+ 0.5[hj

∑
i: si=k

Ỹ 2
ij + hµjµ

2

j
− h̄µj µ̄2

j ].

The block for hj is simulated by the Metropolis-Hastings-within-Gibbs with a gamma

proposal with shape parameter Ahj/2 +n/2, rate parameter 0.5
∑n

i=1 νsij(Ỹij −µsij)2 and

the Metropolis-Hastings acceptance probability min{1, eBhj (h0.5j −(h∗j )0.5)}, where h∗j is the

proposal and hj is the current value. In the descriptions of blocks for µkj, νkj, and hj above,

it was implicitly assumed that index j refers to discrete coordinates (j ∈ {1, . . . , dy}); for

j ≥ dy, Ỹij should be replaced by Xij in the descriptions of these blocks.

For the model with variable m, a block for m is added to the MCMC algorithm. The

update for m is performed by an approximately optimal reversible jump algorithm from

Norets (2020). To apply the algorithm we first transform the mixing weights into unnor-

malized weights α̃k, k = 1, . . ., so that conditional on m, αk = α̃k/
∑m

l=1 α̃l and the Dirich-

let prior on (α1, . . . , αm) corresponds to a gamma prior for the unnormalized weights:

α̃k|m ∼ Gamma(a/m, 1), k = 1, . . . ,m. Let θk = (µk, νk, α̃k), θ1m = (h, θ1, . . . , θm),
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Y = {Yi, Ỹi, Xi i = 1, . . . , n} and denote a proposal distribution for the parameter of

a new mixture component m + 1 by π̃m+1(θm+1|Y, θ1m). The algorithm works as fol-

lows. Simulate proposal m∗ from Pr(m∗ = m + 1|m) = Pr(m∗ = m − 1|m) = 1/2. If

m∗ = m + 1, then also simulate θm+1 ∼ π̃m+1(θm+1|Y, θ1m). Accept the proposal with

probability min{1, α(m∗,m)}, where

α(m∗,m) =
p(Y |m∗, θ1m∗)Π(θ1m∗|m∗)Π(m∗)

p(Y |m, θ1m)Π(θ1m|m)Π(m)

·
(

1{m∗ = m+ 1}
π̃m(θm+1|θ1m, Y )

+ 1{m∗ = m− 1}π̃m−1(θm|θ1m−1, Y )

)
.(14)

Norets (2020) shows that an optimal choice of proposal π̃m is the conditional posterior

p(θm+1|Y,m + 1, θ1m). The conditional posterior can be evaluated up to a normalization

constant; however, it seems hard to directly simulate from it and compute the required

normalization constant. Hence, we use a Gaussian approximation to p(θm+1|Y,m+1, θ1m)

as the proposal (with the mean equal to the conditional posterior mode, obtained by a

Newton method, and the variance equal to the inverse of the negative of the Hessian

evaluated at the mode).

From an initial value of parameters, (θ
(0)
1m,m

(0)), the MCMC algorithm sequentially

updates parameters by simulating from the algorithm blocks. The resulting Markov chain,

(θ
(r)
1m,m

(r)), r = 1, . . . ,M , is used to approximate posterior objects of interest such as the

posterior predictive (or posterior mean) density-point mass

p(y, x|Y n, Xn) ≈ 1

M

M∑
r=1

p(y, x|θ(r)
1m,m

(r)).

APPENDIX B: PROOF OUTLINE FOR LOWER BOUNDS

In this section, we set up the notation and an outline of the proof of Theorem 1. Detailed

calculations are delegated to lemmas in the supplement. The proof is based on a general

theorem from the literature on lower bounds, which we present next in a slightly simplified

form.

Lemma 1 (Theorem 2.5 in Tsybakov (2008), see also Ibragimov and Hasminskii (1977))

ζ is a lower bound on the estimation error in metric ρ for a class Q if there exist a

positive integer M ≥ 2 and qj, qi ∈ Q, 0 ≤ j < i ≤ M such that ρ(qj, qi) ≥ 2ζ, qj << q0,

j = 1, . . . ,M and

(15)
M∑
j=1

KL(Qn
j , Q

n
0 )/M < log(M)/8,
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where KL is the Kullback-Leibler divergence and Qn
j is the distribution of a random sample

from qj.

The following standard result on bounding the number of unequal elements in binary

sequences is used in our construction of qj, j = 1, . . . ,M .

Lemma 2 (Varshamov-Gilbert bound, Lemma 2.9 in Tsybakov (2008)) Consider the set

of all binary sequences of length m̄,

Ω = {w = (w1, . . . , wm̄) : wr ∈ {0, 1}} = {0, 1}m̄.

Suppose m̄ ≥ 8. Then there exists a subset {w1, . . . , wM} of Ω such that w0 = (0, . . . , 0),

m̄∑
r=1

1{wjr 6= wir} ≥ m̄/8, ∀0 ≤ j < i ≤M,

and

M ≥ 2m̄/8.

To define qj’s for our problem, we need some additional notation. Let

K0(u) = exp{−1/(1− u2)} · 1{|u| ≤ 1}.

This function has bounded derivatives of all orders and it smoothly decreases to zero at

the boundary of its support. This type of kernel functions is usually used for construct-

ing hypotheses for lower bounds, see Section 2.5 in Tsybakov (2008). Since we need to

construct a smooth density that integrates to 1, we define (as illustrated in Figure 4)

g(u) = c0[K0(4(u+ 1/4))−K0(4(u− 1/4))],

where c0 > 0 is a sufficiently small constant that will be specified below.
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Figure 4.— Function g for c0 = 1.

Function g will be used as a kernel in construction of qk’s. Let us define the bandwidth

for these kernels first.

For the continuous coordinates, we define the bandwidth as in Ibragimov and Hasmin-

skii (1984),

hi = Γ1/βi
n , i ∈ {dy + 1, . . . , d}.

For the discrete ones, over which smoothing is beneficial, we define the bandwidth as

hi = %i · Γ1/βi
n =

2

Ni

·Ri, i ∈ J c∗ ∩ {1, . . . , dy},

where Ri = bΓ1/βi
n Ni/2c+ 1 is a positive integer and %i ∈ (1, 2] as shown in Lemma 7.

For the rest of the discrete coordinates, our innovation is to first define artificial

anisotropic smoothness coefficients β∗i = − log(Γn)/ logNi, i ∈ J∗, at which the rate

in (6) would have the same value whether we smooth over yi (i ∈ J c∗) or not (i ∈ J∗).

Then, we define the bandwidth as

hi = 2 · Γ1/β∗i
n = 2/Ni, i ∈ J∗.

To streamline the notation, we also define β∗i = βi for i ∈ J c∗ .
Let mi be the integer part of h−1

i , i = 1, . . . , d. Let us consider m̄ =
∏d

i=1mi adjacent

rectangles in [0, 1]d, Br, r = 1, . . . , m̄, with the side lengths (h1, . . . , hd) and centers

cr = (cr1, . . . , c
r
d), c

r
i = hi(kir−1/2), kir ∈ {1, . . . ,mi}. For z ∈ Rd and r = 1, . . . , m̄, define

gr(z) = Γn

d∏
i=1

g((zi − cri )/hi),
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which can be non-zero only on Br. A set of hypotheses is defined by sequences of binary

weights on gr’s as follows

(16) qj(y, x) =

∫
Ay

[
g0(ỹ, x) +

m̄∑
r=1

wjrgr(ỹ, x)

]
dỹ,

where wjr ∈ {0, 1}, j = 0, . . . ,M , and M are defined in Lemma 2, and g0 satisfies the

following conditions: (i) it is a density on Rd, (ii) it is bounded away from zero on [0, 1]d,

(iii) it belongs to Cβ1,...,βd,L/2 for some L ≥ 2. Examples of g0 include uniform (g0 = 1[0,1]d),

a normal density, and a smoothed to zero uniform that is proportional to

d∏
i=1

[
1[0,1](zi) + IK0(zi + 1) · 1(zi < 0) + IK0(2− zi) · 1(zi > 1)

]
,

where IK0(zi) =
∫ zi
−1
K0(u)du

/∫ 1

−1
K0(u)du.

The rest of the proof is delegated to lemmas in the supplement, which show that qk

in (16) satisfy the sufficient conditions from Lemma 1. Specifically, Lemma 3 derives the

lower bound on the total variation distance. Lemma 4 verifies condition (15) when m̄ ≥ 8.

Lemma 5, part (i) of Lemma 7, and the assumptions on g0 imply that the latent densities

in the definition of qj belong to Cβ1,...,βd,L, j = 0, . . . ,M .

This argument (Lemma 4 specifically) requires m̄ ≥ 8 as it relies on Lemma 2. Observe

that as n → ∞, m̄ ≥ 8 if there are continuous variables or there are discrete variables

over which smoothing is beneficial (J c∗ 6= ∅). Thus, m̄ < 8 can happen only if there are no

continuous variables and NJ∗ = N1 · · ·Nd is bounded. This is just a problem of estimating

a multinomial distribution with finite support and the standard results for parametric

problems deliver the usual n−1/2 rate.

APPENDIX C: POSTERIOR CONTRACTION RATES FOR UNBOUNDED SUPPORT

C.1. Assumptions on the Data Generating Process for Unbounded Support

In what follows, we consider a fixed subset of discrete indices J ∈ A and show that

under regularity conditions, the posterior contraction rate is bounded above by
[
NJ
n

] βJc
2βJc+1

times a log factor. If the regularity conditions we describe below for a fixed J hold for

every subset of A, then the posterior contraction rate matches the lower bound in (6) up

to a log factor.

Without a loss of generality, let J = {1, . . . , dJ}, I = {dJ+1, . . . , dy}, J c = {1, . . . , d}\J ,

and dJc = card(J c). Similarly to Y and Ay defined in Section 2, we define YJ =
∏

j∈J Yj
and AyJ =

∏
i∈J Ayi . Also, let yJ = {yi}i∈J , ỹI = {ỹi}i∈I , x̃ = (ỹI , x) ∈ X̃ = RdJc .
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To formulate the assumptions on the data generating process, we need additional no-

tation,

f0J(yJ , x̃) =

∫
AyJ

f0(ỹJ , x̃)dỹJ ,

π0J(yJ) =

∫
X̃
f0J(yJ , x̃)dx̃,

f0|J(x̃|yJ) =
f0J(yJ , x̃)

π0J(yJ)
,

p0|J(yI , x|yJ) =

∫
AyI

f0|J(ỹI , x|yJ)dỹI .

Also, let F0|J and E0|J denote the conditional probability and expectation corresponding

to f0|J . If π0J(yJ) = 0 for a particular yJ , then we can define the conditional density

f0|J(x̃|yJ) arbitrarily. We make the following assumptions on the data generating process.

Assumption 1 There are positive finite constants b, f̄0, τ such that for any yJ ∈ YJ and

x̃ ∈ X̃

f0|J(x̃|yJ) ≤ f̄0 exp (−b||x̃||τ ) .(17)

It appears that all the papers on (near) optimal posterior contraction rates for mixtures

of normal densities impose similar tail conditions on the data generating densities.

Assumption 2 There exists a positive and finite ȳ such that for any (yI , yJ) ∈ Y and

x ∈ X

(18)

∫
AyI∩{||ỹI ||≤ȳ}

f0|J(ỹI , x|yJ)dỹI ≥
∫
AyI∩{||ỹI ||>ȳ}

f0|J(ỹI , x|yJ)dỹI .

This assumption always holds for AyI ⊂ [0, 1]dJc−dx . When AyI is a rectangle with at

least one infinite side, an interpretation of this assumption is that the tail probabilities for

ỹI conditional on (x, yJ) decline uniformly in (x, yJ). Bounded support for ỹI is a sufficient

condition for this assumption.

Assumption 3 We assume that

(19) f0|J ∈ CβdJ+1,...,βd,L,

where for some τ0 ≥ 0 and any (x̃,∆x̃) ∈ R2dJc

(20) L(x̃,∆x̃) = L̃(x̃) exp
{
τ0||∆x̃||2

}
,
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(21) L̃(x̃+ ∆x̃) ≤ L̃(x̃) exp
{
τ0||∆x̃||2

}
.

The smoothness assumption (19) on the conditional density f0|J is implied by the

smoothness of the joint density f0 at least under boundedness away from zero assumption,

see Lemma 10 in Appendix D.2.3. A constant envelop function L used in the lower bound

construction would satisfy the assumption.

Assumption 4 There are positive finite constants ε and F̄ , such that for any yJ ∈ YJ
and k = {ki}i∈Jc ∈ NdJc

0 ,
∑

i∈Jc ki/βi < 1,

∫ [ |Dkf0|J(x̃|yJ)|
f0|J(x̃|yJ)

] (2+εβ−1
Jc

d−1
Jc

)∑
i∈Jc ki/βi

f0|J(x̃|yJ)dx̃ < F̄ ,(22)

∫ [
L̃(x̃)

f0|J(x̃|yJ)

]2+εβ−1
Jc d

−1
Jc

f0|J(x̃|yJ)dx̃ < F̄ .(23)

The envelope function and restrictions on its behaviour are mostly relevant for the case

of unbounded support. Condition (23) suggests that the envelope function L̃ should be

comparable to f0|J .

Assumption 5 For some small ν > 0,

(24) NJ = o(n1−ν).

We impose this assumption to exclude from consideration the cases with very slow

(non-polynomial) rates as some parts of the proof require log(1/εn) to be of order log n.

C.2. Posterior Contraction Rates for Unbounded Support

Let us define a constant that determines the power of the log n term in the upper bound

on the posterior contraction rate derived below in Theorem 3,

(25) tJ0 =


dJc [1+1/(βJcdJc )+1/τ ]+max{τ1,1,τ2/τ}

2+1/βJc
if J c 6= ∅

max{τ1, 1}/2 if J c = ∅

where (τ, τ1, τ2) are defined in Sections 2.1, 4.3.1, and C.1.
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Theorem 3 Suppose the assumptions from Sections 4.3.1 and C.1 hold for a given

J ∈ A. Let

(26) εn =

[
NJ

n

]βJc/(2βJc+1)

(log n)tJ ,

where tJ > tJ0 + max{0, (1 − τ1)/2}. Suppose also nε2n → ∞. Then, there exists M̄ > 0

such that

Π
(
p : dTV (p, p0) > M̄εn|Y n, Xn

) Pn0→ 0.

As in Section 4.2, when J c = ∅, βJc can be defined to be infinity and βJc/(2βJc+1) = 1/2

in (26). Note that in the bounded support case, τ can be chosen arbitrarily large and a

simplified expression in Theorem 2 can be used instead of tJ0 in the lower bound on tJ .

Corollary 1 Suppose the assumptions from Sections 4.3.1 and C.1 hold for every

J ∈ A. Let

(27) εn = min
J∈A

[
NJ

n

]βJc/(2βJc+1)

(log n)tJ ,

where tJ > tJ0 + max{0, (1 − τ1)/2}. Suppose also nε2n → ∞. Then, there exists M̄ > 0

such that

Π
(
p : dTV (p, p0) > M̄εn|Y n, Xn

) Pn0→ 0.

Under the assumptions of the corollary, Theorem 3 delivers a valid upper bound on

the posterior contraction rate for every J ∈ A including the one for which the minimum

in (27) is attained. Hence, the corollary is an immediate implication of Theorem 3. The

proof of Theorem 3 is presented below.

C.3. Proof Outline for Posterior Contraction Results

To prove Theorem 3, we use the following sufficient conditions for posterior contraction

from Theorem 2.1 in Ghosal and van der Vaart (2001). Let εn and ε̃n be positive sequences

with ε̃n ≤ εn, εn → 0, and nε̃2n →∞, and c1, c2, c3, and c4 be some positive constants. Let

ρ be Hellinger or total variation distance. Suppose Fn ⊂ F is a sieve with the following

bound on the metric entropy Me(εn,Fn, ρ)

logMe(εn,Fn, ρ) ≤ c1nε
2
n,(28)

Π(F cn) ≤ c3 exp{−(c2 + 4)nε̃2n}.(29)
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Suppose also that the prior thickness condition holds

(30) Π(K(p0, ε̃n)) ≥ c4 exp{−c2nε̃
2
n},

where the generalized Kullback-Leibler neighborhood K(p0, ε̃n) is defined by

K(p0, ε) =

{
p :

∫
X

∑
y∈Y

p0(y, x) log
p0(y, x)

p(y, x)
dx < ε2,

∫
X

∑
y∈Y

p0(y, x)

[
log

p0(y, x)

p(y, x)

]2

dx < ε2
}
.

Then, there exists M̄ > 0 such that

Π
(
p : ρ(p, p0) > M̄εn|Y n, Xn

) Pn0→ 0.

The definition of the sieve and a verification of conditions (28) and (29) closely follow

analogous results in the literature on contraction rates for mixture models in the context

of density estimation. The details are given in Lemma 20 in the supplement. Verification

of the prior thickness condition is more involved and we formulate it as a separate result

in the following theorem.

Theorem 4 Suppose the assumptions from Sections 4.3.1 and C.1 hold for a given

J ∈ A. Let tJ > tJ0, where tJ0 is defined in (25), and

(31) ε̃n =

[
NJ

n

]βJc/(2βJc+1)

(log n)tJ .

For any C > 0 and all sufficiently large n,

Π(K(p0, ε̃n)) ≥ exp{−Cnε̃2n}.(32)

Approximation results are key for showing the prior thickness condition (32). Appro-

priate approximation results for f0J(yJ , x̃) = f0|J(x̃|yJ)π0J(yJ) are obtained as follows.

Based on approximation results for continuous densities by normal mixtures from Shen

et al. (2013), we obtain approximations for f0|J(·|yJ) for every yJ in the form

(33) f ?|J(x̃|yJ) =
K∑
j=1

α?j|yJφ(x̃;µ?j|yJ , σ
?
Jc),

where the parameters of the mixture will be defined precisely below. For the discrete

variables over which smoothing is not performed, yJ , we show that π0J(yJ) can be appro-

priately approximated by∫
AyJ

∑
y′J

π0J(y′J)φ(ỹJ ; y′J , σ
?
J)dỹJ ,
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where
∫
AyJ

φ(ỹJ , y
′
J , σ

?
J)dỹJ behaves like an indicator 1{yJ = y′J} for sufficiently small σ?J .

Section D.2 in the supplement presents proof details.
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APPENDIX D: SUPPLEMENT

D.1. Proofs and Auxiliary Results for Lower Bounds

Lemma 3 For qj, ql, i 6= l defined in (16), the total variation distance is bounded below

by const · Γn.

Proof: Let us establish several facts about gr in the definition of qj. For any (ỹ, x) ∈
[0, 1]d, there exists r(ỹ, x) such that

(34) gr(ỹ, x) = 0, ∀r 6= r(ỹ, x).

For (ỹ, x) ∈ Br, r(ỹ, x) = r and for (ỹ, x) /∈ ∪m̄r=1Br, r(ỹ, x) can have an arbitrary value.

Thus,

dTV (qj, ql) =
∑
y

∫ ∣∣∣∣∣
∫
Ay

[
m̄∑
r=1

(wjr − wlr)gr(ỹ, x)

]
dỹ

∣∣∣∣∣ dx
=
∑
y

∫ ∣∣∣∣∣
∫
Ay

(wjr(ỹ,x) − w
l
r(ỹ,x))gr(ỹ,x)(ỹ, x)dỹ

∣∣∣∣∣ dx.
From hi = (2/Ni) ·Ri for i ∈ {1, . . . , dy}, where Ri is a positive integer, and the definitions

of g, gr, and Ay, it follows that for fixed y ∈ Y and x ∈ [0, 1]dx , (wjr(ỹ,x)−wlr(ỹ,x))gr(ỹ,x)(ỹ, x)

does not change the sign as ỹ changes within Ay (r(ỹ, x) is the same ∀ỹ ∈ Ay by the choice

of cri and hi). Therefore,

dTV (qj, ql) =

∫ ∫ ∣∣∣(wjr(ỹ,x) − w
l
r(ỹ,x))gr(ỹ,x)(ỹ, x)

∣∣∣ dỹdx(35)

=
m̄∑
r=1

∫
Br

∣∣∣(wjr(z) − wlr(z))gr(z)(z)
∣∣∣ dz

=
m̄∑
r=1

|wjr − wlr|
∫
Br

|gr(z)| dz.

Finally, using a change of variables in (35), Lemma 2, and mihi > 1/2, we get

dTV (qj, ql) =
m̄∑
r=1

1{wjr 6= wlr} · Γn ·
d∏
i=1

hi ·

[∫ 1/2

−1/2

|g(u)|du

]d

≥ Γn ·
d∏
i=1

mihi ·

[∫ 1/2

−1/2

|g(u)|du

]d
/8

≥ Γn ·

[∫ 1/2

−1/2

|g(u)|du/2

]d
/8.

Q.E.D.
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Lemma 4 For Γn → 0 and m̄ ≥ 8 and a sufficiently small c0 in the definition of g,

condition (15) in Lemma (1) holds for all sufficiently large n.

Proof: By Lemma 2, it suffices to show that

(36) dKL(Qn
j , Q

n
0 ) = n · dKL(qj, q0) < (m̄ log 2)/64.

First, note that for any z ∈ [0, 1]d, the density in the definition of qj

(37) g0(z) +
m̄∑
r=1

wjrgr(z) ≥ g
0
− Γn

[
max

u∈[−1/2,1/2]
g(u)

]d
≥ g

0
/2 > 0

for all sufficiently large n, where g
0

= minz∈[0,1]d g0(z) > 0 by the assumption on g0.

By (47) in Lemma 6 and non-negativity of the Kullback-Leibler divergence

dKL(qj, q0) ≤ dKL

(
g0 +

m̄∑
r=1

wjrgr, g0

)
(38)

≤ dKL

(
g0 +

m̄∑
r=1

wjrgr, g0

)
+ dKL

(
g0, g0 +

m̄∑
r=1

wjrgr

)

=

∫
Rd

log

(
g0(z) +

m̄∑
r=1

wjrgr(z)

)(
m̄∑
r=1

wjrgr(z)

)
dz

=

∫
[0,1]d

log

(
g0(z) +

m̄∑
r=1

wjrgr(z)

)(
m̄∑
r=1

wjrgr(z)

)
dz,

where the last equality follows from gr(z) = 0 outside [0, 1]d. The integrand of the last

integral is bounded above by 2g−1
0

(∑m̄
r=1 w

j
rgr(z)

)2
, which follows from the logarithm

inequality, 1− 1/u ≤ log u ≤ u− 1, ∀u > 0, and (37). Thus,

dKL(qj, q0) ≤ 2g−1

0

∫ [ m̄∑
r=1

wjrgr(z)

]2

dz(39)

= 2g−1

0

∫ m̄∑
r=1

wjr(gr(z))2dz

≤ 2g−1

0
m̄

∫
(g1(z))2dz = 2g−1

0
Γ2
n

∏
i

(mihi)

[∫ 1/2

−1/2

g(u)2du

]d

≤ 2g−1

0
Γ2
n

[∫ 1/2

−1/2

g(u)2du

]d
≤ 2g−1

0
Γ2
nc

2d
0 ,

where the first equality holds since gr(z)gl(z) = 0,∀r 6= l. Finally,

m̄ =
d∏
i=1

mi ≥ 2−d
d∏
i=1

h−1
i
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= 2−d
∏
i∈J∗

(Ni/2) ·
∏

i∈Jc∗ ,i≤dy

(
Γ
−β−1

i
n /%i

)
·
∏

i∈Jc∗ ,i>dy

(
Γ
−β−1

i
n

)
≥ 2−d

∏
i∈J∗

(Ni/2) ·
∏

i∈Jc∗ ,i≤dy

(
Γ
−β−1

i
n /2

)
·
∏

i∈Jc∗ ,i>dy

(
Γ
−β−1

i
n

)
= 2−d−dy ·NJ∗ · Γ

−β−1
Jc∗

n = 2−d−dynΓ2
n

≥ 2−d−dyn · dKL(qj, q0)/(2g−1

0
c2d

0 ),

where the first inequality holds by definitions of m̄ and mi, the second equality by defi-

nition of hi, the second inequality by restrictions on %i, and the last inequality by (39).

The last inequality implies (36) if

c0 ≤ [g
0
2−(d+dy+7) log 2]1/(2d).

Q.E.D.

Lemma 5 For j ∈ {1, . . . ,M}, a part of the density in the definition of qj, fj =∑m̄
r=1 w

j
rgr ∈ Cβ

∗
1 ,...,β

∗
d ,L with L = 1 for any sufficiently small constant c0 in the defini-

tion of g.

Proof: Consider k = (k1, . . . , kd) and z,∆z ∈ Rd such that for some i ∈ {1, . . . , d},
∆zi 6= 0, for any l 6= i, ∆zl = 0,

∑d
l=1 kl/β

∗
l < 1, and

∑d
l=1 kl/β

∗
l + 1/β∗i ≥ 1 so that

(40) 0 ≤ β∗i (1−
d∑
l=1

kl/β
∗
l ) ≤ 1.

For r(·) defined in (34),

Dkfj(z) = wr(z)Γn

d∏
l=1

g(kl)((zl − cr(z)l )/hl)/h
ki
l

= Bi · wr(z)h
β∗i (1−

∑d
l=1 kl/β

∗
l )

i

d∏
l=1

g(kl)((zl − cr(z)l )/hl),(41)

where Bi ∈ {1, 1/2, %
−β∗i
i } ⊂ (0, 1]. From Tsybakov (2008), (2.33)-(2.34), for any suffi-

ciently small c0 and s ≤ maxl β
∗
l + 1,

(42) max
z
|g(s)(z)| ≤ 1/8.

This imply that

(43) |g(ki)((zi + ∆zi − cri )/hi)− g(ki)((zi − cri )/hi)| ≤ |∆zi|/(8hi).
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First, let us consider the case when r(z) = r(z + ∆z) and |∆zi| ≤ hi. From (41), (42),

and (43),

|Dkfj(z + ∆z)−Dkfj(z)| ≤ h
β∗i (1−

∑d
l=1 kl/β

∗
l )

i 8−d|∆zi/hi|

= 8−d|∆zi|β
∗
i (1−

∑d
l=1 kl/β

∗
l )

∣∣∣∣∆zihi

∣∣∣∣1−β∗i (1−
∑d
l=1 kl/β

∗
l )

≤ |∆zi|β
∗
i (1−

∑d
l=1 kl/β

∗
l ),(44)

where the last inequality follows from ∆zi ≤ hi and (40).

Second, consider the case when r(z) = r(z + ∆z) and |∆zi| > hi. Similarly to the

previous case but without using (43),

|Dkfj(z + ∆z)−Dkfj(z)| ≤ 2 · 8−dhβ
∗
i (1−

∑d
l=1 kl/β

∗
l )

i ≤ |∆zi|β
∗
i (1−

∑d
l=1 kl/β

∗
l ).

Third, consider the case when r(z) 6= r(z+∆z) and |∆zi| ≤ hi/2. If wr(z) = wr(z+∆z) = 0

or z, z + ∆z /∈ ∪m̄r=1Br

|Dkfj(z + ∆z)−Dkfj(z)| = Dkfj(z + ∆z) = Dkfj(z) = 0.

If wr(z) 6= wr(z+∆z) or if one of z and z + ∆z is not in ∪m̄r=1Br, then without a loss of

generality suppose that wr(z) = 1 or that z + ∆z /∈ ∪m̄r=1Br. Let |∆z?i | ∈ [0, |∆zi|] and

∆z? = (0, . . . , 0,∆z?i , 0, . . . , 0) be such that z + ∆z? is a boundary point of Br(z). Then,

Dkfj(z + ∆z?) = 0 and (44) imply

|Dkfj(z + ∆z)−Dkfj(z)| = |Dkfj(z)| = |Dkfj(z + ∆z?)−Dkfj(z)|

≤ |∆z?i |β
∗
i (1−

∑d
l=1 kl/β

∗
l ) ≤ |∆zi|β

∗
i (1−

∑d
l=1 kl/β

∗
l ).

If wr(z) = wr(z+∆z) = 1 and z, z + ∆z ∈ ∪m̄r=1Br then by construction of fj and g

|Dkfj(z + ∆z)−Dkfj(z)| = |Dkfj(z + ∆z + 0.5hi)−Dkfj(z + 0.5hi)|

≤ |∆zi|β
∗
i (1−

∑d
l=1 kl/β

∗
l ),

where the last inequality follows from (44).

Finally, when r(z) 6= r(z + ∆z) and ∆zi > hi/2,

|Dkfj(z + ∆z)−Dkfj(z)| ≤ |Dkfj(z + ∆z)|+ |Dkfj(z)|

≤ 2 · 8−dhβ
∗
i (1−

∑d
l=1 kl/β

∗
l )

i

≤ |∆zi|β
∗
i (1−

∑d
l=1 kl/β

∗
l ).
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Now, let us consider a general ∆z such that for ∆zi 6= 0,
∑d

l=1 kl/β
∗
l + 1/β∗i ≥ 1.

|Dkfj(z + ∆z)−Dkfj(z)|

≤
d∑
i=1

∣∣Dkfj(z1, . . . , zi−1, zi + ∆zi, . . . , zd + ∆zd)

−Dkfj(z1, . . . , zi, zi+1 + ∆zi+1, . . . , zd + ∆zd)
∣∣.

The preceding argument applies to every term in this sum and, thus, fj ∈ Cβ
∗
1 ,...,β

∗
d ,1.

Q.E.D.

Lemma 6 Let fi : Ỹ ×X → R, i ∈ {1, 2}, be densities with respect to a product measure

λ × µ on Ỹ × X ⊂ Rd. For a finite set Y, let {Ay, y ∈ Y} be a partition of Ỹ and let

pi(y, x) =
∫
Ay
fi(ỹ, x)dλ(ỹ). Then,

dTV (p1, p2) ≤ dTV (f1, f2)(45)

dH(p1, p2) ≤ dH(f1, f2)(46)

dKL(p1, p2) ≤ dKL(f1, f2).(47)

Also, if for given (y, x), f2(ỹ, x) > 0 for any ỹ ∈ Ay, then

(48) inf
ỹ∈Ay

f1(ỹ, x)

f2(ỹ, x)
≤ p1(y, x)

p2(y, x)
≤ sup

ỹ∈Ay

f1(ỹ, x)

f2(ỹ, x)
.

Proof: Trivially,

dTV (p1, p2) =
∑
y

∫ ∣∣∣∣∣
∫
Ay

(f1(ỹ, x)− f2(ỹ, x))dỹ

∣∣∣∣∣ dµ(x)

≤
∑
y

∫ ∫
Ay

|f1(ỹ, x)− f2(ỹ, x)|dλ(ỹ)dµ(x) = dTV (f1, f2).

By Holder inequality,

dH(p1, p2) = 2

(
1−

∑
y

∫ √∫
1Ay(ỹ1)f1(ỹ1, x)dλ(ỹ1) ·

∫
1Ay(ỹ2)f2(ỹ2, x)dλ(ỹ2)dµ(x)

)

≤ 2

(
1−

∑
y

∫ ∫
1Ay(ỹ)

√
f1(ỹ, x)f2(ỹ, x)dλ(ỹ)dµ(x)

)
= dH(f1, f2).

For fixed (y, x),∫
Ay

(f1(ỹ, x)/p1(y, x)) log
f1(ỹ, x)/p1(y, x)

f2(ỹ, x)/p2(y, x)
dλ(ỹ) ≥ 0
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since the Kullback-Leibler divergence is nonnegative. Thus,∫
Ay

f1(ỹ, x) log
f1(ỹ, x)

f2(ỹ, x)
dλ(ỹ) ≥

∫
Ay

f1(ỹ, x) log
p1(y, x)

p2(y, x)
dλ(ỹ) = p1(y, x) log

p1(y, x)

p2(y, x)
.

This inequality integrated with respect to dµ(x) and summed over y implies (47). The

last claim follows from

f2(ỹ, x) inf
z̃∈Ay

f1(z̃, x)

f2(z̃, x)
≤ f1(ỹ, x) ≤ f2(ỹ, x) sup

z̃∈Ay

f1(z̃, x)

f2(z̃, x)
.

Q.E.D.

Lemma 7 For Γn, hi, %i, and β∗i defined in Section 4.2, (i) β∗i ≥ βi for i = 1, . . . , d and

(ii) %i ∈ (1, 2] for i ∈ J c∗ ∩ {1, . . . , dy}.

Proof: For i /∈ J∗, β∗i = βi by definition. For i ∈ J∗, from the definition of Γn,

Γn ≤
[
NJ∗/Ni

n

] 1

2+β−1
Jc∗

+β−1
i = Γ

2+β−1
Jc∗

2+β−1
Jc∗

+β−1
i

n N

−1

2+β−1
Jc∗

+β−1
i

i ,

which implies N−βii ≥ Γn. By the definition of β∗i , N
−β∗i
i = Γn and, thus, β∗i ≥ βi.

For i ∈ J c∗ , from the definition of Γn,

[
NJ∗Ni

n

] 1

2+β−1
Jc∗
−β−1

i ≥
[
NJ∗

n

] 1

2+β−1
Jc∗ ,

which implies

Ni ≥
[
NJ∗

n

] 2+β−1
Jc∗
−β−1

i

2+β−1
Jc∗ = Γ

−β−1
i

n =⇒

Γ
β−1
i
n ≥ 1

Ni

,

and, therefore, Γ
β−1
i
n Ni ≥ 1. Next, define

%i =

⌊
Γ
β−1
i
n Ni/2

⌋
+ 1

Γ
β−1
i
n Ni/2

.

Then %i ∈ (1, 2] as Γ
β−1
i
n Ni ≥ 1. Q.E.D.
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D.2. Proofs of Posterior Contraction Results

D.2.1. Proof of Theorem 4 for J c 6= ∅

Define β = dJc
[∑

k∈Jc β
−1
k

]−1
, βmin = minj∈Jc βj, and σn = [ε̃n/ log(1/ε̃n)]1/β. For ε

defined in (22)-(23), b and τ defined in (17), and a sufficiently small δ > 0, let a0 = {(8β+

4ε + 8 + 8β/βmin)/(bδ)}1/τ , aσn = a0{log(1/σn)}1/τ , and b1 > max{1, 1/2β} satisfying

ε̃b1n {log(1/ε̃n)}5/4 ≤ ε̃n. Then, the proofs of Theorems 4 and 6 in Shen et al. (2013) imply

the following two claims for each yJ = k ∈ YJ under the assumptions of Section C.1.

First, there exists a partition {Uj|k, j = 1, . . . , K} of {x̃ ∈ X̃ : ||x̃|| ≤ 2aσn}, such

that for j = 1, . . . , N , Uj|k is contained within an ellipsoid with center µ?j|k and radii

{σβ/βin ε̃2b1n , i ∈ J c}

Uj|k ⊂

{
x̃ :

dJc∑
i=1

[
(x̃i − µ?j|k,i)/(σ

β/βdJ+i
n ε̃2b1n )

]2

≤ 1

}
;

for j = N + 1, . . . , K, Uj|k is contained within an ellipsoid with radii {σβ/βin , i ∈ J c}, and

1 ≤ N < K ≤ C1σ
−dJc
n {log(1/ε̃n)}dJc+dJc/τ , where C1 > 0 does not depend on n and yJ .

Second, for each k ∈ YJ there exist α?j|k, j = 1, . . . , K, with α?j|k = 0 for j > N , and

µx?jk ∈ Uj|k for j = N + 1, . . . , K such that for a positive constant C2 and σ?Jc = {σβ/βin for

i ∈ J c},

(49) dH
(
f0|J(·|k), f ?|J(·|k)

)
≤ C2σ

β
n,

where f ?|J is defined in (33). Constant C2 is the same for all k ∈ YJ since all the bounds

on f0|J assumed in Section C.1 are uniform over k.

Note also that our smoothness definition is different from the one used by Shen et al.

(2013). In Lemmas 8 and 9 we show that our smoothness definition (f0|J ∈ CL,βdJ+1,...,βd)

delivers an anisotropic Taylor expansion with bounds on remainder terms such that the

argument on p. 637 of Shen et al. (2013) goes through.

Third, by Lemma 12, which is an extension of a part of Proposition 1 in Shen et al.

(2013), there exists a constant B0 > 0 such that for all yJ ∈ YJ

F0|J

(
||X̃|| > aσn|yJ

)
≤ B0σ

4β+2ε
n σ8

n,(50)

where

σn = min
i∈Jc

σβ/βin .
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For m = NJK we define θ? and Sθ? as:

θ? =

{
{µ?1, . . . , µ?m} =

{
(k, µ?j|k), j = 1, . . . , K, k ∈ YJ

}
,

{α?1, . . . , α?m} =
{
α?jk = α?j|kπ0J(k), j = 1, . . . , K, k ∈ YJ

}
,

σ?2J = {σ?2i = 1/[64N2
i β log(1/σn)], i ∈ J}

σ?Jc = {σ?i = σβ/βin , i ∈ J c},
}

Sθ? =

{
{µ1, . . . , µm} = {(µjk,J , µjk,Jc), j = 1, . . . , K, k ∈ YJ} ,

µjk,Jc ∈ Uj|k, µjk,i ∈
[
ki −

1

4Ni

, ki +
1

4Ni

]
, i ∈ J,

σ2
i ∈

(
0, σ?2i

)
, i ∈ J,

σ2
i ∈

(
σ?2i (1 + σ2β

n )−1, σ?2i
)
, i ∈ J c,

(α1, . . . , αm) = {αjk, j = 1, . . . , K, k ∈ YJ} ∈ ∆m−1,
m∑
r=1

|αr − α?r| ≤ 2σ2β
n , min

j≤K,k∈YJ
αjk ≥

σ2β+dJc
n

2m2

}
,

where ∆m−1 denotes the m-dimensional simplex.

The rest of the proof of the Kullback-Leibler thickness condition follows the general

argument developed for mixture models in Ghosal and van der Vaart (2007) and Shen

et al. (2013) among others. First, we will show that for m = NJK and θ ∈ Sθ? , the

Hellinger distance d2
H(p0(·, ·), p(·, ·|θ,m)) can be bounded by σ2β

n up to a multiplicative

constant. Second, we construct bounds on the ratios p(·, ·|θ,m)/p0(·, ·) and combine them

with the bound on the Hellinger distance using Lemma 11. Finally, we will show that the

prior puts sufficient probability on m = NJK and Sθ? .

For f ?|J defined in (33), let us define

p?|J(yI , x|yJ) =

∫
AyI

f ?|J(ỹI , x|yJ)dỹI .

For m = NJK and θ ∈ Sθ? , we can bound the Hellinger distance between the DGP and

the model as follows,

d2
H(p0(·, ·), p(·, ·|θ,m)) = d2

H(p0|J(·|·)π0(·), p(·, ·|θ,m))

≤ d2
H(p0|J(·|·)π0J(·), p?|J(·|·)π0J(·)) + d2

H(p?|J(·|·)π0J(·), p(·, ·|θ,m)).
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It follows from (49) and Lemma 6 linking distances between probability mass functions

and corresponding latent variable densities that the first term on the right hand side

of this inequality is bounded by (C2)2σ2β
n . Combining this result with the bound on

d2
H(p?|J(·|·)π0J(·), p(·, ·|θ,m)) from Lemma 13 we obtain

d2
H(p0(·, ·), p(·, ·|θ,m)) . σ2β

n ,(51)

where “.” denotes less or equal up to a multiplicative positive constant relation.

Next, for θ ∈ Sθ? and m = NJK, let us consider lower bounds on the ratio

p(yJ , yI , x|θ,m)/p0(yJ , yI , x). In Lemma 16, we show that lower bounds on the ratio

fJ(yJ , x̃|θ,m)/f0|J(x̃|yJ)π0(yJ) imply the following bounds for all sufficiently large n: for

any x ∈ X with ‖x‖ ≤ aσn ,

p(yJ , yI , x|θ,m)

p0(yJ , yI , x)
≥ C3

σ2β
n

2m2
≡ λn,(52)

for some constant C3 > 0; and for any x ∈ X with ‖x‖ > aσn ,

p(yJ , yI , x|θ,m)

p0(yJ , yI , x)
≥ exp

{
−8||x||2

σ2
n

− C4 log n

}
,(53)

for some constant C4 > 0. Consider all sufficiently large n such that λn < e−1 and (52)

and (53) hold. Then, for any θ ∈ Sθ? ,∑
y∈Y

∫
X

(
log

p0(yJ , yI , x)

p(yJ , yI , x|θ,m)

)2

1

{
p(yJ , yI , x|θ,m)

p0(yJ , yI , x)
< λn

}
p0(yJ , yI , x)dx(54)

=
∑
y∈Y

∫
X̃

(
log

p0(yJ , yI , x)

p(yJ , yI , x|θ,m)

)2

1

{
p(yJ , yI , x|θ,m)

p0(yJ , yI , x)
< λn

}
1 {ỹI ∈ AyI} f0J(yJ , x̃)dx̃

=
∑
y∈Y

∫
X̃

(
log

p0(yJ , yI , x)

p(yJ , yI , x|θ,m)

)2

1

{
p(yJ , yI , x|θ,m)

p0(yJ , yI , x)
< λn, ||x|| > aσn , ỹI ∈ AyI

}
f0J(yJ , x̃)dx̃

≤
∑
y∈Y

∫
{x̃:||x||>aσn}

(
log

p0(yJ , yI , x)

p(yJ , yI , x|θ,m)

)2

1 {ỹI ∈ AyI} f0J(yJ , x̃)dx̃

≤
∑
y∈Y

∫
{x̃:||x||>aσn}

[
128

σ4
n

||x||4 + 2(C4 log n)2

]
f0|J(x̃|yJ)1 {ỹI ∈ AyI} dx̃π0J(yJ)

≤
∑
yJ∈YJ

∫
{x̃:||x̃||>aσn}

[
128

σ4
n

||x̃||4 + 2(C4 log n)2

]
f0|J(x̃|yJ)dx̃π0J(yJ)
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≤ 128

σ4
n

∑
yJ∈YJ

E0|yJ

(∥∥∥X̃∥∥∥8
)1/2 (

F0|yJ

(∥∥∥X̃∥∥∥ > aσn

))1/2

π0J(yJ)

+ 2(C4 log n)2B0σ
4β+2ε
n σ8

n

≤ C5σ
2β+ε
n

for some constant C5 > 0 and all sufficiently large n, where the last inequality holds by

the tail condition in (17), (50), and (log n)2σ2β+ε
n σ8

n → 0.

Furthermore, as λn < e−1,

log
p0(yJ , yI , x)

p(yJ , yI , x|θ,m)
1

{
p(yJ , yI , x|θ,m)

p0(yJ , yI , x)
< λn

}
≤
(

log
p0(yJ , yI , x)

p(yJ , yI , x|θ,m)

)2

1

{
p(yJ , yI , x|θ,m)

p0(yJ , yI , x)
< λn

}
and, therefore,∑

y∈Y

∫
X

log
p0(yJ , yI , x)

p(yJ , yI , x|θ,m)
1

{
p(yJ , yI , x|θ,m)

p0(yJ , yI , x)
< λn

}
p0(yJ , yI , x)dx(55)

≤ C5σ
2β+ε
n .

Inequalities (51), (54), and (55) combined with Lemma 11 imply

E0

(
log

p0(yJ , yI , x)

p(yJ , yI , x|θ,m)

)
≤ Aε̃2n, E0

([
log

p0(yJ , yI , x)

p(yJ , yI , x|θ,m)

]2
)
≤ Aε̃2n

for any θ ∈ Sθ? , m = NJK, and some positive constant A (details are provided in Lemma

17).

By Lemma 18 for all sufficiently large n, s = 1 + 1/β + 1/τ , and some C6 > 0,

Π(K(p0, ε̃n)) ≥ Π(m = NJK, θ ∈ Sθ?)

≥ exp
[
−C6NJ ε̃

−dJc/β
n {log(n)}dJcs+max{τ1,1,τ2/τ}

]
.

The last expression of the above display is bounded below by exp{−Cnε̃2n} for any C > 0,

ε̃n =
[
NJ
n

]β/(2β+dJc )
(log n)tJ , any

tJ > (dJcs+max{τ1, 1, τ2/τ})/(2+dJc/β), and all sufficiently large n. Since the inequality

in the definition of tJ is strict, the claim of the theorem follows.

When J = ∅ and NJ = 1, the preceding argument delivers the claim of the theorem

if we add an artificial discrete coordinate with only one possible value to the vector of

observables.
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D.2.2. Proof of Theorem 4 for J c = ∅

In this case, the proof from the previous subsection can be simplified as follows. For

m = NJ and for any β > 0 we define θ? and Sθ? as

θ? =

{
{µ?1, . . . , µ?m} = {k, k ∈ YJ} ,

{α?1, . . . , α?m} = {α?k, k ∈ YJ} = {π0(k)}k∈YJ ,

σ?2 = {σ?2i =
1

64N2
i β log(1/σn)

, i ∈ J}
}
,

Sθ? =

{
{µ1, . . . , µm} = {µk, k ∈ YJ} , µk,i ∈

[
ki −

1

4Ni

, ki +
1

4Ni

]
, i ∈ J,

σ = {σi ∈ (0, σ?i ), i ∈ J},

{αj, j = 1, . . . ,m} = {αk, k ∈ YJ} ∈ ∆m−1,∑
k∈YJ

|αk − α?k| ≤ 2σ2β
n , min

k∈YJ
αk ≥

σ2β
n

2m2

}
.

For m = NJ and θ ∈ Sθ? , a simplification of the proof of Lemma 13 delivers

d2
H(p0(·), p(·|θ,m)) ≤ 2 max

k∈YJ

∫
Ack

φ(ỹJ ;µk, σ)dỹJ +
∑
k∈YJ

|α?k − αk| . σ2β
n .

A simplification of derivations in Lemma 16 show that for all yJ ∈ YJ
p(yJ |θ,m)

p0(yJ)
≥ 1

2

σ2β
n

2m2
≡ λn.

Then, for any θ ∈ Sθ?∑
yJ∈YJ

(
log

p0(yJ)

p(yJ |θ,m)

)2

1

{
p(yJ |θ,m)

p0(yJ)
< λn

}
p0(yJ) = 0

∑
yJ∈YJ

(
log

p0(yJ)

p(yJ |θ,m)

)
1

{
p(yJ |θ,m)

p0(yJ)
< λn

}
p0(yJ) = 0

as p(yJ |θ,m)
p0(yJ )

≥ λn for all yJ ∈ YJ . As λn → 0, by Lemma 11 for λn < λ0, both

E0(log p0(yJ )
p(yJ |θ,m)

) and E0([log p0(yJ )
p(yJ |θ,m)

]2) are bounded by C7 log(1/λn)2σ2β
n ≤ Aε̃2n for some

constant A. By the simplification of Lemma 18 for this particular case for all sufficiently

large n and some C8 > 0,

Π(K(p0, ε̃n)) ≥ Π(m = NJ , θ ∈ Sθ?) ≥ exp
[
−C8NJ{log(n)}max{τ1,1}

]
.

The last expression of the above display is bounded below by exp{−Cnε̃2n} for any C > 0,

ε̃n =
[
NJ
n

]1/2
(log n)tJ , any tJ > max{τ1, 1}/2, and all sufficiently large n. Since the

inequality in the definition of tJ is strict, the claim of the theorem follows.
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D.2.3. Auxiliary Results for Posterior Contraction Rates

For a multi-index k = (k1, . . . , kd) ∈ Zd+, let k! =
∏d

i=1 ki!, and for z ∈ Rd, let zk =∏d
i=1 z

ki
i .

Lemma 8 (Anisotropic Taylor Expansion) For f ∈ Cβ1,...,βd,L and r ∈ {1, . . . , d}

f(x1 + y1, . . . , xd + yd) =
∑
k∈Ir

yk

k!
Dkf(x1, . . . , xr, xr+1 + yr+1, . . . , xd + yd)(56)

+
r∑
l=1

∑
k∈Īl

yk

k!

(
Dkf(x1, . . . , xl + ζkl , xl+1 + yl+1, . . . , xd + yd)(57)

−Dkf(x1, . . . , xl, xl+1 + yl+1, . . . , xd + yd)

)
,(58)

where ζkl ∈ [xl, xl + yl] ∪ [xl + yl, xl],

I l =

{
k = (k1, . . . , kl, 0, . . . , 0) ∈ Zd+ : ki ≤

⌊
βi(1−

i−1∑
j=1

kj/βj)
⌋
s
, i = 1, . . . , l

}
,

Ī l =

{
k ∈ I l : kl =

⌊
βl(1−

l−1∑
j=1

kj/βj)
⌋
s

}
,

and the differences in derivatives in (57)-(58) are bounded by

L
∣∣ζkl ∣∣βl(1−∑d

i=1 ki/βi) .

Proof: The lemma is proved by induction. For r = 1, (56)-(58) is a standard univariate

Taylor expansion of f(x+y) in the first argument around (x1, x2+y2, . . . , xd+yd). Suppose

(56)-(58) holds for some r ∈ {1, . . . , d}. Then, let us show that (56)-(58) holds for r + 1.

For that, consider a univariate Taylor expansion of Dkf in (56). The following notation

will be useful. Let ei ∈ Rd, i = 1, . . . , d, be such that eij = 1 for i = j and eij = 0 for

i 6= j and k∗r+1 = bβr+1(1−
∑r

j=1 kj/βj)cs. Then,

Dkf(x1, . . . , xr, xr+1 + yr+1, . . . , xd + yd) =

k∗r+1∑
kr+1=0

y
kr+1

r+1

kr+1!
Dk+kr+1·er+1f(x1, . . . , xr+1, xr+2 + yr+2, . . . , xd + yd)

+
y
k∗r+1

r+1

k∗r+1!

(
Dk+k∗r+1·er+1f(x1, . . . , xr, xr+1 + ζ

k+k∗r+1·er+1

r+1 , xr+2 + yl+2, . . . , xd + yd)

−Dk+k∗r+1·er+1f(x1, . . . , xr, xr+1, xr+2 + yl+2, . . . , xd + yd)

)
.

Inserting this expansion into (56) delivers the result for r + 1.

Q.E.D.
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Lemma 9 Let R(x, y) denote the remainder term in the anisotropic Taylor expansion

( (57)-(58) for r = d). Suppose f ∈ Cβ1,...,βd,L and L satisfies (20)-(21). Let σ = {σi =

σ
β/βi
n , i = 1, . . . , d} and σn → 0. Then, for all sufficiently large n,∫

|R(x, y)|φ(y; 0, σ)dy . L(x)σβn.

Proof: Note that |R(x, y)| is bounded by a sum of the following terms over k ∈ Ī l and

l ∈ {1, . . . , d}

yk

k!

∣∣∣∣Dkf(x1, . . . , xl + ζkl , xl+1 + yl+1, . . . , xd + yd)

−Dkf(x1, . . . , xl, xl+1 + yl+1, . . . , xd + yd)

∣∣∣∣
≤ yk

k!
L
(
x+ (0, . . . , 0, yl+1:d), ζ

k
l el
) ∣∣ζkl ∣∣βl(1−∑d

i=1 ki/βi)

≤ L̃(x) exp
{
τ0||yl+1:d||2

}
exp

{
τ0||ζkl ||2

} ∣∣ζkl ∣∣βl(1−∑d
i=1 ki/βi)

≤ L̃(x)
yk

k!
exp

{
τ0||y||2

}
|yl|βl(1−

∑d
i=1 ki/βi) ,

where we used inequalities (4), (20), and (21) and that
∣∣ζkl ∣∣ ≤ |yl|.

For all sufficiently large n such that τ0 < 0.5/maxi σ
2
i ,∫ ∣∣∣∣L̃(x)

yk

k!
exp

{
τ0||y||2

}
|yl|βl(1−

∑d
i=1 ki/βi)

∣∣∣∣φ(y; 0, σ)dy

. L̃(x)
l−1∏
i=1

∫
|yi|kiφ(yi; 0;σi

√
2)dyi ·

∫
ykll |yl|

βl(1−
∑d
i=1 ki/βi) φ(yl; 0;σl

√
2)dyl

. L̃(x)σk11 · · · σ
kl−1

l−1 σ
kl+βl(1−

∑d
i=1 ki/βi)

l

= L̃(x)σk1β/β1n · · ·σklβ/βln σ
β
βl
βl(1−

∑d
i=1 ki/βi)

n = L̃(x)K2σ
β
n,

where we use
∫
|z|ρφ(z, 0, ω)dz . ωρ and kl+1 = · · · = kd = 0 for k ∈ Īl. Thus, the claim

of the lemma follows.

Q.E.D.

Lemma 10 Suppose density f0 ∈ Cβ1,...,βd,L with a constant envelope L has support on

[0, 1]d and f0(z) ≥ f > 0. Then, f0|J ∈ CβdJc ,...,βd,L/f .

Proof: For x̃,∆x̃ ∈ X , yJ ∈ YJ , and some ỹ∗J ∈ AyJ , by the mean value theorem,

Dkf0|J(x̃+ ∆x̃|yJ)−Dkf0|J(x̃|yJ) =
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=
1

π0J(yJ)

∫
AyJ

(
D0,...,0,kf0(ỹJ , x̃+ ∆x̃)−D0,...,0,kf0(ỹJ , x̃)

)
dỹJ

=
1/NJ

π0J(yJ)

(
D0,...,0,kf0(ỹ∗J , x̃+ ∆x̃)−D0,...,0,kf0(ỹ∗J , x̃)

)
and the claim of the lemma follows from the definition of Cβ1,...,βd,L and π0J(yJ) ≥ f/NJ .

Q.E.D.

Lemma 11 There is a λ0 ∈ (0, 1) such that for any λ ∈ (0, λ0) and any two conditional

densities p, q ∈ F , a probability measure P on Z that has a conditional density equal to

p, and dh defined with the distribution on X implied by P ,

P log
p

q
≤ d2

h(p, q)

(
1 + 2 log

1

λ

)
+ 2P

{(
log

p

q

)
1

(
q

p
≤ λ

)}
,

P

(
log

p

q

)2

≤ d2
h(p, q)

(
12 + 2

(
log

1

λ

)2
)

+ 8P

{(
log

p

q

)2

1

(
q

p
≤ λ

)}
,

Proof: The proof is exactly the same as the proof of Lemma 4 of Shen et al. (2013),

which in turn, follows the proof of Lemma 7 in Ghosal and van der Vaart (2007). Q.E.D.

Lemma 12 Under the assumptions and notation of Section 4.3, for for some B0 ∈ (0,∞)

and any yJ ∈ YJ ,

F0|J

(
||X̃|| > aσn

∣∣yJ) ≤ B0σ
4β+2ε
n σ8

n.

Proof: Note that in the proof of Proposition 1 of Shen et al. (2013) it is shown that

aSTGσn > a, where aSTG0 = {(8β + 4ε+ 16)/(bδ)}1/τ and aSTGσn = aSTG0 log(1/σn)1/τ . As a0 >

aSTG0 and aσn > aSTGσn , therefore aσn > a. Define E∗σn =
{
x̃ ∈ RdJc : f0|J(x̃|yJ) ≥ σ

(4β+2ε+8β/βmin)/δ
n

}
.

Note that by construction of s2 in proof of Proposition 1 of Shen et al. (2013) and as

σn < s2 it follows that

(4β + 2ε+ 8)

bδ
log

(
1

σn

)
≥ 1

b
log f̄0 =⇒ σ

− (4β+2ε+8)
δ

n ≥ f̄0.

For x̃ ∈ E∗σn ,

f0|J(x̃|yJ) ≥ σ(4β+2ε+8β/βmin)/δ
n = σ(8β+4ε+8β/βmin+8)/δ

n σ−(4β+2ε+8)/δ
n

≥ f̄0σ
(8β+4ε+8β/βmin+8)/δ
n = f̄0σ

aτ0b
n = f̄0 exp

{
−baτ0 log(

1

σn
)

}
= f̄0 exp

{
−b
(
a0(log(

1

σn
)1/τ )

)τ}
= f̄0 exp

{
−baτσn

}
.
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As aσn > a and as f0|J(x̃|yJ) ≥ f̄0 exp{−baτσn}, then the tail condition (17) is satisfied only

if ||x̃|| < aσn . Therefore, E∗σn ⊂
{
x̃ ∈ RdJ : ||x̃|| ≤ aσn

}
. As in the proof of Proposition 1

of Shen et al. (2013), by Markov’s inequality,

F0|J

(
||X̃|| > aσn|yJ

)
≤ F0|J(E∗,cσn |yJ)

= F0|J
(
f0|J(x̃|yJ)−δ > σ−(4β+2ε+8β/βmin)

n |yJ
)

≤ B0σ
4β+2ε+8β/βmin
n = B0σ

4β+2ε
n σ8

n

as desired since σ
β/βmin
n = σn and the tail condition on f0|J(·|yJ), (17), implies the existence

of a δ > 0 small enough such that E0|J(f−δ0|J) ≤ B0 <∞ for any yJ ∈ YJ . Q.E.D.

Lemma 13 Under the assumptions and notation of Section 4.3, for m = KNJ and any

θ ∈ Sθ?

d2
H(p?|J(·|·)π0(·), p(·, ·|θ,m)) . σ2β

n .

Proof: Let us define

fJ(yJ , x̃|θ,m) =

∫
AyJ

f(ỹJ , x̃|θ,m)dỹJ .

Then,

d2
H(p?|J(·|·)π0(·), p(·, ·|θ,m)) ≤ dTV (p?|J(·|·)π0(·), p(·, ·|θ,m))

≤ dTV (f ?|J(·|·)π0(·), fJ(·, ·|θ,m))

=
∑
yJ∈YJ

∫
X̃

∣∣∣∣ ∑
k∈YJ

K∑
j=1

α?j|kπ0(k)1{k = yJ}φ(x̃, µ?j|k, σ
?
Jc)

− αjk
∫
AyJ

φ(ỹJ , µjk,J , σJ)dỹJ · φ(x̃, µjk,Jc , σJc)

∣∣∣∣dx̃
≤
∑
yJ∈YJ

∫
X̃

∣∣∣∣∣∑
k∈YJ

K∑
j=1

α?jk1{k = yJ}φ(x̃, µ?j|k, σ
?
Jc)− α?jk1{k = yJ}φ(x̃, µjk,Jc , σJc)

∣∣∣∣∣ dx̃
+
∑
yJ∈YJ

∫
X̃

∣∣∣∣ ∑
k∈YJ

K∑
j=1

α?jk1{k = yJ}φ(x̃, µjk,Jc , σJc)

− αjk
∫
AyJ

φ(ỹ, µjk,J , σJ)dỹφ(x̃, µjk,Jc , σJc)

∣∣∣∣dx̃,
where the first inequality follows from d2

H(·, ·) ≤ dTV (·, ·), the second inequality holds by

Lemma 6, and the last inequality is obtained by the triangle inequality.
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Let’s explore the two parts of the right hand side in the last inequality independently.

First,

∑
yJ∈YJ

∫
X̃

∣∣∣∣∣∑
k∈YJ

K∑
j=1

α?jk1{k = yJ}φ(x̃, µ?j|k, σ
?
Jc)− α?jk1{k = yJ}φ(x̃, µjk,Jc , σJc)

∣∣∣∣∣ dx̃
≤
∑
yJ∈YJ

∑
k∈YJ

K∑
j=1

α?jk1{k = yJ}
∫
X̃

∣∣φ(x̃, µ?j|k, σ
?
Jc)− φ(x̃, µjk,Jc , σJc)

∣∣ dx̃
≤ max

j≤N,k∈YJ
dTV (φ(·;µ?j|k, σ?Jc), φ(·, µjk,Jc , σJc)) . σ2β

n ,

where the fact that α?j,k = 0 for j > N by design is used to get j ≤ N rather than j ≤ K

in the max subscript. The last inequality is proved in Lemma 14.

Second,

∑
yJ∈YJ

∫
X̃

∣∣∣∣ ∑
k∈YJ

K∑
j=1

α?jk1{k = yJ}φ(x̃, µjk,Jc , σJc)

− αjk
∫
AyJ

φ(ỹJ , µjk,J , σJ)dỹJφ(x̃, µjk,Jc , σJc)

∣∣∣∣dx̃
=

K∑
j=1

( ∑
yJ∈YJ

∣∣∣∣∣∑
k∈YJ

α?jk1{k = yJ} − αjk
∫
AyJ

φ(ỹJ , µjk,J , σJ)dỹJ

∣∣∣∣∣
∫
X̃
φ(x̃, µjk,Jc , σJc)dx̃

)

=
K∑
j=1

∑
yJ∈YJ

∣∣∣∣∣∑
k∈YJ

α?jk1{k = yJ} − αjk
∫
AyJ

φ(ỹJ , µjk,J , σJ)dỹJ

∣∣∣∣∣
≤
∑
yJ∈YJ

∑
k∈YJ

K∑
j=1

∣∣∣∣∣α?jk1{k = yJ} − α?jk
∫
AyJ

φ(ỹJ , µjk,J , σJ)dỹJ

∣∣∣∣∣
+
∑
yJ∈YJ

∑
k∈YJ

K∑
j=1

∣∣∣∣∣α?jk
∫
AyJ

φ(ỹJ , µjk,J , σJ)dỹJ − αjk
∫
AyJ

φ(ỹJ , µjk,J , σJ)dỹJ

∣∣∣∣∣
≤
∑
yJ∈YJ

∑
k∈YJ

K∑
j=1

α?jk

∣∣∣∣∣1{k = yJ} −
∫
AyJ

φ(ỹJ , µjk,J , σJ)dỹJ

∣∣∣∣∣
+
∑
yJ∈YJ

∑
k∈YJ

K∑
j=1

∣∣α?jk − αjk∣∣ ∫
AyJ

φ(ỹJ , µjk,J , σJ)dỹJ

=
∑
k∈YJ

K∑
j=1

(
α?jk

∑
yJ∈YJ

∣∣∣∣∣1{k = yJ} −
∫
AyJ

φ(ỹJ , µjk,J , σJ)dỹJ

∣∣∣∣∣
)

+
∑
k∈YJ

K∑
j=1

(∣∣α?jk − αjk∣∣ ∑
yJ∈YJ

∫
AyJ

φ(ỹJ , µjk,J , σJ)dỹJ

)

≤
∑
k∈YJ

K∑
j=1

α?jk

[∫
Ack

φ(ỹJ , µjk,J , σJ)dỹJ +
∑
yJ 6=k

∫
AyJ

φ(ỹJ , µjk,J , σJ)dỹJ

]
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+
∑
k∈YJ

K∑
j=1

∣∣α?jk − αjk∣∣
=
∑
k∈YJ

K∑
j=1

α?jk · 2
∫
Ack

φ(ỹJ , µjk,J , σJ)dỹJ +
∑
k∈YJ

K∑
j=1

∣∣α?jk − αjk∣∣
≤ 2 max

j≤N,k∈YJ

∫
Ack

φ(ỹJ , µjk,J , σJ)dỹJ +
∑
k∈YJ

K∑
j=1

∣∣α?jk − αjk∣∣ . σ2β
n .

The last inequality follows from Lemma 15 and the definition of Sθ? .

Q.E.D.

Lemma 14 Under the assumptions and notation of Section 4.3,

max
j≤N,k∈YJ

dTV (φ(·;µ?j|k, σ?Jc), φ(·, µjk,Jc , σJc)) . σ2β
n .

Proof: Fix some j ≤ N and k ∈ YJ . It is known that

dTV (φ(·;µ?j|k, σ?Jc), φ(·, µjk,Jc , σJc)) ≤ 2
√
dKL(φ(·;µ?j|k, σ?Jc), φ(·, µjk,Jc , σJc))

and

dKL(φ(·;µ?j|k, σ?Jc), φ(·, µjk,Jc , σJc)) =
∑
i∈Jc

σ2
i

σ?2i
− 1− log

σ2
i

σ?2i
+

(µ?j|k,i − µjk,i)2

σ?2i
.

From the definition of Sθ? ,

∑
i∈Jc

(µ?j|k,i − µjk,i)2

σ?2i
≤ ε̃4b1n ≤ σ4β

n .

Since σ2
i ∈ (σ?2i (1 + σ2β

n )−1, σ?2i ) and the fact that |z − 1 − log z| . |z − 1|2 for z in a

neighborhood of 1, we have for all sufficiently large n∣∣∣∣ σ2
i

σ?2i
− 1− log

σ2
i

σ?2i

∣∣∣∣ . (1− σ2
i

σ?2i

)2

. σ4β
n .

The three inequalities derived above imply the claim of the lemma.

Q.E.D.

Lemma 15 Under the assumptions and notation of Section 4.3, for θ ∈ Sθ?,

max
j≤N,k∈YJ

∫
Ack

φ(ỹJ , µjk,J , σJ)dỹJ . σ2β
n .
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Proof: Fix j ≤ N , k ∈ YJ , and θ ∈ Sθ? . Since µjk,i ∈
[
ki − 1

4Ni
, ki + 1

4Ni

]
,∫

Ack

φ(ỹJ , µjk,J , σJ)dỹJ ≤
∑
i∈J

Pr

(
ỹi /∈

[
ki −

1

2Ni

, ki +
1

2Ni

])
≤
∑
i∈J

Pr

(
ỹi /∈

[
µjk,i −

1

4Ni

, µjk,i +
1

4Ni

])

= 2
∑
i∈J

∫ − 1
4Niσi

−∞
φ(ỹi, 0, 1)dỹi

≤ 2
∑
i∈J

exp

{
− 1

2(4Niσi)2

}
≤ 2

∑
i∈J

σ2β
n . σ2β

n ,

where the last inequality follows from the restrictions on σJ in Sθ? and the penultimate

inequality follows from a bound on the normal tail probability derived below.

If Ỹi hasN(0, 1) distribution, then the moment generating function isM(θ) = exp{θ2/2}.
Note that exp{θ(Ỹi − (4Niσi)

−1)} ≥ 1 when Ỹi ≤ (4Niσi)
−1 and θ ≤ 0, therefore,∫ − 1

4Niσi

−∞
φ(ỹi, 0, 1)dỹi ≤ inf

θ≤0
P exp

{
θ(Ỹi − (4Niσi)

−1)
}

= inf
θ≤0

exp
{
−θ(4Niσi)

−1
}
M(θ)

= inf
θ≤0

exp
{
−θ(4Niσi)

−1
}

exp
{
θ2/2

}
= exp

{
−(4Niσi)

−2/2
}
.

Q.E.D.

Lemma 16 Under the assumptions and notation of Section 4.3, for any (yJ , yI) ∈ Y,

some constants C3, C4 > 0 and all sufficiently large n,

p(yJ , yI , x|θ,m)

p0(yJ , yI , x)
≥ C3

σ2β
n

m2
≡ λn,(59)

when ‖x‖ ≤ aσn and

p(yJ , yI , x|θ,m)

p0(yJ , yI , x)
≥ exp

{
−8||x||2

σ2
n

− C4 log n

}
(60)

when ‖x‖ > aσn.

Proof: By assumption (17), f0|J(x̃|yJ) ≤ f̄0, and π0J(yJ) ≤ 1 for all (x̃, yJ). Therefore,

fJ(yJ , x̃|θ,m)

f0|J(x̃|yJ)π0J(yJ)
≥ f̄−1

0 fJ(yJ , x̃|θ,m)(61)

Let k? = yJ . Then, by Lemma 15, for any j ∈ {1, . . . , K},∫
AyJ

φ(ỹJ ;µjk∗,J , σJ)dỹJ ≥
1

2
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for all n large enough as σn → 0.

For any x̃ ∈ X̃ with ‖x̃‖ ≤ 2aσn , by the construction of sets Uj|k? , there exists

j? ∈ {1, . . . , K} such that x̃, µj?|k? ∈ Uj?|k? and for all sufficiently large n,
∑

i∈Jc(x̃i −
µj?|k?,i)

2/σ2
i ≤ 4. Then,

φ(x̃, µj?|k? , σJc) = (2π)−dJc/2
∏
i∈Jc

σ−1
i exp

{
−0.5

∑
i∈Jc

(x̃i − µj?|k?,i)2/σ2
i

}
≥ (2π)−dJc/2σ−dJcn e−2.

Thus,

fJ(yJ , x̃|θ) =
∑
k∈YJ

K∑
j=1

αjk

∫
AyJ

φ(ỹJ , µjk,J , σJ)dỹJφ(x̃, µjk,Jc , σJc)

≥ αj?k∗φ(x̃, µj?k?,Jc , σJc)

∫
AyJ

φ(ỹJ , µj?k?,J , σJ)dỹJ

and for C3 = f̄−1
0 (2π)−dJc/2e−2/8,

fJ(yJ , x̃|θ,m)

f0|J(x̃|yJ)π0J(yJ)
≥ f̄−1

0 · min
j≤K,k∈YJ

αjk · (2π)−dJc/2σ−dJcn e−2 · 1

2

≥ 2C3
σ2β
n

m2
= 2λn.(62)

By assumption (18), for any x ∈ X , any yJ ∈ YJ , and all sufficiently large n,

(63)

∫
AyI

f0|J(x̃|yJ)π0J(yJ)dỹI ≤ 2

∫
AyI∩{ỹI : ‖ỹI‖≤aσn}

f0|J(x̃|yJ)π0J(yJ)dỹI .

For any x ∈ X with ‖x‖ ≤ aσn and ỹI ∈ AyI ∩{ỹI : ‖ỹI‖ ≤ aσn}, we have ‖x̃‖ ≤ 2aσn and

p(yJ , yI , x|θ,m)

p0(yJ , yI , x)
=

∫
AyI

fJ(yJ , x̃|θ,m)dỹI∫
AyI

f0|J(x̃|yJ)π0J(yJ)dỹI

≥

∫
AyI∩{ỹI : ‖ỹI‖≤aσn}

fJ(yJ , x̃|θ,m)dỹI

2
∫
AyI∩{ỹI : ‖ỹI‖≤aσn}

f0|J(x̃|yJ)π0J(yJ)dỹI
≥ λn,(64)

where the first inequality follows from (63) and the second one from (62) combined with

Lemma 6.

Next, let us bound fJ(yJ , x̃|θ,m)/f0|J(x̃|yJ)π0(yJ) from below for x̃ ∈ X̃ such that

‖x‖ > aσn and ‖ỹI‖ ≤ aσn . For any j ≤ K and k ∈ YJ , ||x̃ − µjk,Jc ||2 ≤ 2(||x̃||2 +

||µjk,Jc||2) ≤ 16||x||2 as ||µjk,Jc || ≤ 2aσn by construction of Uj|k and 2||x|| > ||x̃||. Then

φ(x̃, µjk,Jc , σJc) = (2π)−dJc/2
∏
i∈Jc

σ−1
i exp

{
−0.5

∑
i∈Jc

(x̃i − µjk,i)2/σ2
i

}
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≥ (2π)−dJc/2σ−dJcn exp

{
−8||x||2

σ2
n

}
.

Then, for n large enough

fJ(yJ , x̃|θ,m) =
∑
k∈YJ

K∑
j=1

αjk

∫
AyJ

φ(ỹJ , µjk,J , σJ)dỹJφ(x̃, µjk,Jc , σJc)

≥ (2π)−dJc/2σ−dJcn exp

{
−8||x||2

σ2
n

} K∑
j=1

αjk
∑
k∈YJ

∫
AyJ

φ(ỹJ , µjk,J , σJ)dỹJ

≥ (2π)−dJc/2σ−dJcn exp

{
−8||x||2

σ2
n

}
1

2
K min

j,k
αjk.

Combining this inequality with (61), we get

fJ(yJ , x̃|θ,m)

f0|J(x̃|yJ)π0J(yJ)
≥ 1

2
(2π)−dJc/2 f̄−1

0 σ−dJcn K
σ2β+dJc
n

2m2
exp

{
−8||x||2

σ2
n

}
≥ exp

{
−8||x||2

σ2
n

− C4 log n

}
(65)

for sufficiently large C4 because | log
[
Kσ2β

n /m
2
]
| . log n.

Thus, for ||x|| > aσn , (65) and the first inequality in (64), which holds for any x ∈ X ,

deliver

p(yJ , yI , x|θ,m)

p0(yJ , yI , x)
≥ exp

{
−8||x||2

σ2
n

− C4 log n

}
.(66)

Q.E.D.

Lemma 17 Under the assumptions and notation of Section 4.3, for λn < λ0, where λ0

is defined in Lemma 11,

E0

([
log

p0(yJ , yI , x)

p(yJ , yI , x|θ,m)

]2
)
≤ Aε̃2n

E0

([
log

p0(yJ , yI , x)

p(yJ , yI , x|θ,m)

])
≤ Aε̃2n

Proof:

E0

([
log

p0(yJ , yI , x)

p(yJ , yI , x|θ,m)

]2
)

≤ d2
H(p0(·, ·), p(·, ·|θ,m))

(
12 + 2

(
log

1

λn

)2
)

+ 8P

{(
log

p0(·, ·)
p(·, ·|θ,m)

)2

1

{
p(·, ·|θ,m)

p0(·, ·)
< λn

}}
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. σ2β
n (12 + 2 log(1/λn)2) + σ2β+ε

n . log(1/λn)2σ2β
n ,

where first inequality is derived using Lemma 11 and penultimate inequality is derived

using inequalities (51) and (55). Similarly,

E0

(
log

p0(yJ , yI , x)

p(yJ , yI , x|θ,m)

)
≤ d2

H(p0(·, ·), p(·, ·|θ,m))

(
1 + 2

(
log

1

λn

))
+ 2P

{(
log

p0(·, ·)
p(·, ·|θ,m)

)
1

{
p(·, ·|θ,m)

p0(·, ·)
< λn

}}
. σ2β

n (1 + 2 log(1/λn)) + σ2β+ε
n . log(1/λn)σ2β

n .

Furthermore,

log(1/λn)σ2β
n ≤ log(1/λn)2σ2β

n = log

(
2NJK

2

σ2β
n

)2

ε̃2n(log(ε̃−1
n ))−2

≤
(

log[2N2
J(C1σ

−dJc
n {log(ε̃−1

n )}dJc+dJc/τ )2σ−2β
n ]

log(ε̃−1
n )

)2

ε̃2n,

where the term multiplying ε̃2n on the right hand side is bounded by Assumption 5 (NJ =

o(n1−ν)) and definitions of ε̃n and σn. Q.E.D.

Lemma 18 Under the assumptions and notation of Section 4.3, for all sufficiently large

n, s = 1 + 1/β + 1/τ , and some C6 > 0

Π(m = NJK, θ ∈ Sθ?) ≥ exp
[
−C6NJ ε̃

−dJc/β
n {log(n)}dJcs+max{τ1,1,τ2/τ}

]
.

Proof: First, consider the prior probability of m = NJK. By (3) for some C61 > 0,

Π(m = NJK) ∝ exp[−a10NJK(logNJK)τ1 ](67)

≥ exp[−C61NJ ε̃
−dJc/β
n {log(1/ε̃n)}sdJc (log n)τ1 ]

≥ exp[−C61NJ ε̃
−dJc/β
n {log(n)}sdJc+τ1 ]

as NJ = o(n1−ν) by (24) and ε̃−1
n < n.

Second, consider the prior on {αjk}. There exist (j0, k0) such that α?j0k0 ≥
1
m

and

suppose that |α?jk − αjk| ≤ σ2β
n

m2 for all (j, k) 6= (j0, k0). Then,

∣∣α?j0k0 − αj0k0∣∣ =

∣∣∣∣∣∣
∑

(jk)6=(j0k0)

α?jk − αjk

∣∣∣∣∣∣ ≤ (m− 1)
σ2β
n

m2
≤ σ2β

n

m
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αj0k0 ≥ α?j0k0 −
σ2β
n

m
≥ 1− σ2β

n

m
≥ σ2β+dJc

n

2m2
.

Furthermore,

K∑
j=1

∑
k∈YJ

|αjk − α?jk| ≤ (m− 1)
σ2β
n

m2
+
σ2β
n

m
≤ 2σ2β

n .

It then follows that

Π

(
K∑
j=1

∑
k∈YJ

|αjk − α?jk| ≤ 2σ2β
n , min

j≤K,k∈YJ
αjk ≥

σ2β+dJc
n

2m2

)

≥ Π

(
|αjk − α?jk| ≤

σ2β
n

m2
, αjk ≥

σ2β
n

2m2
, (j, k) ∈ {1, . . . , K} × YJ \ {(j0, k0)}

)
≥ exp

{
−C62NJK log(NJK/σ

β
n)
}
,

where the last inequality is derived in the proof of Lemma 10 in Ghosal and van der Vaart

(2007) for some C62 > 0 (see, also, Lemma 6.1 in Ghosal et al. (2000)). Note that

K log(NJK/σ
β
n)(68)

≤ ε̃−dJc/βn log(ε̃−1
n )dJcs log(NJ ε̃

−dJc/β−1
n log(ε̃−1

n )dJcs+1)

. ε̃−dJc/βn log(n)dJcs+1.

Assumption (11) on the prior for σi implies that for i ∈ J
dJ∏
i=1

Π(σ−2
i ≥ 32N2

i β log σ−1
n )(69)

≥
dJ∏
i=1

(
a6(64N2

i β log σ−1
n )a7 exp

{
−a9(64N2

i β log σ−1
n )1/2

})
≥ exp

{
−C63NJ log(σ−1

n )
}
≥ exp {−C64NJ log(n)} ,

and for i ∈ J c,
dJc∏
i=1

Π
(
σ−2
i,n ≤ σ−2

i ≤ σ−2
i,n (1 + σ2β

n )
)
≥

dJc∏
i=1

(
a6(σ−2

i,n )a7σ2a8β
n exp

{
−a9σ

−1
i,n

})
(70)

≥
dJc∏
i=1

exp
{
−C65σ

−1
i,n

}
=

dJc∏
i=1

exp
{
−C65σ

−β/βi
n

}
≥ exp

{
−C65dJcσ

−dJc
n

}
≥ exp

{
−C66ε̃

−dJc/β
n log(n)dJc/β

}
.

Assumption (7) on the prior for µjk implies

K∏
j=1

∏
k∈YJ

∏
i∈J

Π

(
µjk,i ∈

[
ki −

1

4Ni

, ki +
1

4Ni

])
(71)
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≥
(
a112−dJN−1

J exp {−a12}
)NJK

≥ exp {−C67NJK log(NJ)}

≥ exp
{
−C68NJ ε̃

−dJc/β
n log(n)dJcs+1

}
and

K∏
j=1

∏
k∈YJ

Π
(
µjk,Jc ∈ Uj|k

)
≥
(
a11 exp

{
−a12a

τ2
σn

}
min
j,k

V ol(Uj|k)

)NJK
(72)

=
(
a11 exp

{
−a12a

τ2
σn

}
σdJcn ε̃2b1dJcn

)NJK
≥ exp

{
−C69NJ ε̃

−dJc/β
n log(n)dJcs+max{1,τ2/τ}

}
.

It follows from (67) - (72), that for all sufficiently large n and some C6 > 0,

Π(K(p0, ε̃n)) ≥ Π(m = NJK, θ ∈ Sθ?)

≥ exp[−C6NJ ε̃
−dJc/β
n {log(n)}dJcs+max{τ1,1,τ2/τ}].

Q.E.D.

Lemma 19 For H ∈ N, 0 < σ < σ, and µ > 0, let us define a sieve

F = {p(y, x|θ,m) : m ≤ H, µj ∈ [−µ, µ]d, j = 1, . . . ,m,(73)

σi ∈ [σ, σ], i = 1, . . . , d}.

For 0 < ε < 1 and σ ≤ 1,

Me(ε,F , dTV ) ≤H ·
⌈

12µd

σε

⌉Hd
·
[

15

ε

]H
·
⌈

log(σ/σ)

log(1 + ε/[12d])

⌉d
.

For all sufficiently large H, large σ and small σ,

Π(F c) ≤H2d exp{−a13µ
τ3}+ exp{−a10H(logH)τ1}

+ da1 exp{−a2σ
−2a3}+ da4 exp{−2a5 log σ}.

Proof: The proof is similar to proofs of related results in Norets and Pati (2017), Shen

et al. (2013), and Ghosal and van der Vaart (2001) among others.

Let us begin with the first claim. For a fixed value of m, define set Smµ to contain centers

of |Smµ | = d12µd/(σε)e equal length intervals partitioning [−µ, µ]. Let Smα be an ε/3-net of

∆m−1 in total variation distance (∀α ∈ ∆m−1, ∃α̃ ∈ Smα , dTV (α, α̃) ≤ ε/3). From Lemma

A.4 in Ghosal and van der Vaart (2001), the cardinality of Smα , is bounded as follows

|Smα | ≤ [15/ε]m.
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Define Sσ = {σl, l = 1, . . . , dlog(σ/σ)/(log(1 + ε/(12d)e, σ1 = σ, (σl+1−σl)/σl = ε/(12d)}.
Let us show that

SF = {p(y, x|θ,m) : m ≤ H, α ∈ Smα , σi ∈ Sσ, µji ∈ Smµ , j ≤ m, i ≤ d}

is an ε-net for F in dTV . For a given p(·|θ,m) ∈ F with σli ≤ σi ≤ σli+1, i = 1, . . . , d, find

α̃ ∈ Smα , µ̃ji ∈ Smµx , and σ̃i = σli ∈ Sσ such that for all j = 1, . . . ,m and i = 1, . . . , d

|µji − µ̃ji| ≤
σε

12d
,
∑
j

|αj − α̃j| ≤
ε

3
,
|σi − σ̃i|

σ̃i
≤ ε

12d
.

By Lemma 6, dTV (p(·|θ,m), p(·|θ̃, m)) ≤ dTV (f(·|θ,m), f(·|θ̃, m)). Similarly to the proof

of Proposition 3.1 in Norets and Pelenis (2014) or Theorem 4.1 in Norets and Pati (2017),

dTV (f(·|θ,m), f(·|θ̃, m)) ≤
∑
j

|αj − α̃j|+ 2 max
j=1,...,m

||φ(·;µj, σ)− φ(·; µ̃j, σ̃||1

≤ ε/3 + 4
d∑
i=1

{
|µji − µ̃ji|
min(σi, σ̃i)

+
|σi − σ̃i|

min(σi, σ̃i)

}
≤ ε.

This concludes the proof for the covering number.

The proof of the upper bound on Π(F c) is the same as the corresponding proof of

Theorem 4.1 in Norets and Pati (2017), except here the coordinate specific scale param-

eters and slightly different notation for the prior tail condition (8) lead to dimension d

appearing in front of some of the terms in the bound.

Q.E.D.

Lemma 20 Consider εn = (NJ/n)βJc/(2βJc+1)(log n)tJ and

ε̃n = (NJ/n)βJc/(2βJc+1)(log n)t̃J with tJ > t̃J + max{0, (1 − τ1)/2} and t̃J > tJ0, where

tJ0 is defined in (25). Define Fn as in (73) with ε = εn, H = nε2n/(log n), α = e−nH ,

σ = n−1/(2a3), σ = en, and µ = n1/τ3. Then, for some constants c1, c3 > 0 and every

c2 > 0, Fn satisfies (28) and (29) for all large n.

Proof: From Lemma 19,

logMe(εn,Fn, ρ) ≤ c1H log n = c1nε
2
n.

Also,

Π(F cn) ≤ H2 exp{−a13n}+ exp{−a10H(logH)τ1}
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+ a1 exp{−a2n}+ a4 exp{−2a5n}.

Hence, Π(F cn) ≤ e−(c2+4)nε̃2n for any c2 if ε2n(log n)τ1−1/ε̃2n → ∞, which holds for tJ >

t̃J + max{0, (1− τ1)/2}.
Q.E.D.
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