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We propose a framework for making Bayesian parametric models robust to local misspec-
ification. Suppose in a baseline parametric model, a parameter of interest has an interpreta-
tion in a more general semiparametric model and the baseline model is only locally misspec-
ified. In general, Bayesian and maximum likelihood estimators will be asymptotically biased
in these settings. We propose to augment the baseline likelihood by a multiplicative factor
that involves scores for the baseline model, the efficient scores for the encompassing semi-
parametric model, and an auxiliary parameter that has the same dimension as the parameter
of interest. We show that this augmented model results in a marginal posterior for the pa-
rameter of interest that is asymptotically normal with mean equal to the semiparametrically
efficient estimator and variance equal to the semiparametric efficiency bound. The suggested
augmentation thus robustifies the baseline parametric model to local misspecification, while
preserving the appeal of Bayesian inference. We develop an MCMC algorithm for the esti-
mation of the augmented model, and illustrate the approach in applications.

KEYWORDS: Bayesian methods, Semiparametric efficiency, Bernstein-von Mises theo-
rem, Local misspecification, Robustness.

1. INTRODUCTION

Consider a researcher seeking to conduct Bayesian inference in a simple location model
with independently identically distributed (i.i.d.) observations. The researcher is interested both
in the population mean, and the quantiles of the distribution (say, for forecasting purposes).
The data seems symmetric, but with tails that are heavier than those of a normal model. The
researcher thus follows textbook advice and models the data as distributed Student’s t, shifted
by the location parameter.

By the parametric Bernstein-von Mises theorem, if the Student’s t model is correct, the large
sample posterior for the population mean is approximately normal with the same asymptotic
variance as the maximum likelihood estimator (MLE). This variance is smaller than the vari-
ance of the sample mean. Yet, as is well known, the sample mean is the semiparametrically
efficient estimator of the location parameter. By implication, there exist local deviations of the
Student’s t model that induce a local bias in the MLE, and thus the posterior distribution, that
are of the same order as the posterior uncertainty about the population mean. These deviations
are not detectable with probability close to unity, even in large samples. So the researcher has
no way of knowing for sure that the Student’s t model is misspecified, and the implications of
the Student’s t model for the data quantiles continue to be correct to first order.

Of course, if the researcher is confident in the correctness of the Student’s tmodel, then these
considerations are irrelevant. But if the Student’s t model was merely chosen for convenience
and analytical tractability, then they are potentially worrying: implicitly, the Student’s t model
imposes constraints that allow for more efficient estimation of the population mean if correct,
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but under local violations, they generate local biases that can lead to highly erroneous inference
about the population mean.

In this paper, we propose to embed a baseline parametric model into a higher dimensional
augmented parametric model so that by construction, large sample posteriors are centered at
the semiparametrically efficient estimator, and have a variance equal to the semiparametric ef-
ficiency bound. Thus, the parameter of interest in the augmented model does not suffer from
local biases, for any local misspecification. The augmented model here really is a model, that is,
it fully specifies a data generating process (DGP) and the analysis is still fully Bayesian. Many
of the desirable features of Bayesian analysis are therefore preserved, such as the likelihood
principle, the automatic coherence of multiple Bayes actions, the ability to flexibly incorporate
prior knowledge, and accounting for parameter uncertainty in decision and forecasting prob-
lems.

There are two natural alternatives to this approach. The first is to make parametric assump-
tions in the baseline model that directly yield a likelihood that is centered at the semiparametric
efficient estimator. For instance, in the example of the location model, this may be achieved by
assuming that the data is Gaussian, as the Gaussian MLE is simply the sample mean. However,
the misspecification then becomes first order, and the posterior no longer correctly captures
data quantiles. Forecasts implied by the posterior thus become quite misleading, for example.
Moreover, due to the misspecification, the posterior variance no longer correctly captures sam-
pling uncertainty of the implied estimator in more general models (cf. Müller (2013)). While
this can be corrected, such corrections do not lead to a full-information Bayes analysis, and
they therefore lack the above mentioned advantages.

The second alternative is to directly employ Bayesian semiparametric modeling. Under high
level assumptions, semiparametric Bernstein-von Mises (BVM) theorems state that in such
models the marginal posteriors for the finite dimensional parameters behave like classical semi-
parametrically efficient estimators; see, for example Shen (2002), Bickel and Kleijn (2012),
Castillo (2012), Rivoirard and Rousseau (2012), Kato (2013), Castillo and Nickl (2013), and
Castillo and Rousseau (2013). However, this direct Bayes semiparametric approach also has
potential shortcomings. On the one hand, the assumptions of semiparametric BVM theorems
are notoriously difficult to verify. In the context of models used in economics, we are aware of
only one example where the assumptions of a semiparametric BVM theorem are known to hold:
a partially linear regression with normal homoskedastic errors and a Gaussian process prior on
the nonlinear part of the regression, see Bickel and Kleijn (2012). On the other hand MCMC
estimation of models with nonparametric priors could be very computationally expensive or
even infeasible for higher dimensions or large sample sizes.

For these reasons, the approach suggested here might be a practically appealing approach
to robustify Bayesian inference to local misspecification in many settings: The analysis con-
tinues to be fully Bayesian, avoids the theoretical pitfalls and practical complications of high-
dimensional priors, and allows researchers to continue to work with (potentially locally mis-
specified) simple parametric models.

The proposed model augmentation consists of a multiplicative factor that involves scores
for the baseline model, the efficient scores for an encompassing semiparametric model, and an
auxiliary parameter that has the same dimension as the parameter of interest. The augmented
model nests the baseline model as a special case when the auxiliary parameter is zero. We de-
velop a Markov Chain Monte Carlo (MCMC) algorithm to estimate the augmented model for
a generic baseline model. The algorithm is based on auxiliary latent variables and acceptance
sampling, which handle difficult-to-compute normalization constants induced by the augmen-
tation factors, and Hamiltonian Monte Carlo (HMC). The algorithm only requires the follow-
ing functions as inputs: logarithms of the baseline likelihood and prior and their derivatives, a
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function that simulates random variables from the baseline model, baseline scores and efficient
scores and their derivatives.

The remainder of the paper is organized as follows. Section 2 develops the theoretical results.
We discuss the suggested generic MCMC sampling method for the augmented model in Sec-
tion 3. Section 4 contains illustrations in Weibull and Student’s t regression models. Section 5
concludes.

2. MODEL SETUP AND THEORETICAL RESULTS

Subsection 2.1 sets up the notation and standard asymptotic results for the baseline paramet-
ric model. In Subsection 2.2, we define local misspecification and show that it leads to a local
bias in the estimation of the baseline model. Subsection 2.3 outlines notation and definitions for
efficient estimation in a semiparametric model encompassing the baseline model, which will be
used in the following subsection to construct an augmentation of the baseline model that avoids
the bias under local misspecification. Finally, Theorem 1 in Subsection 2.5 shows that the pos-
terior distribution in the augmented model converges to a normal distribution with mean equal
to a semiparametrically efficient estimator and variance equal to the semiparametric efficiency
bound, even if the baseline model is locally misspecified.

In this section we heavily rely on the definitions and basic asymptotics results from van der
Vaart (1998), especially Chapter 25 on semiparametric models.

2.1. Baseline model, notation, and standard asymptotics under correct specification

Suppose the observations Yi ∈ Y , i = 1, . . . , n are independently identically distributed ac-
cording to distribution Pθ , where θ ∈ Rm. Suppose θ = (γ, ζ), where γ = ψ(Pθ) ∈ Rk is the
parameter of interest and ζ is a nuisance parameter. Let ℓ̇θ be the score, so that the MLE
θ̂ = (γ̂, ζ̂) (or, equivalently, the Bayes estimator) under correct specification and regularity
conditions satisfies

√
n(θ̂− θ) =

1√
n
I−1
θ

n∑
i=1

ℓ̇θ(Yi) + oPθ(1)

=
1√
n

(
Iγ Iγζ
Iζγ Iζ

)−1 n∑
i=1

(
ℓ̇γ(Yi)

ℓ̇ζ(Yi)

)
+ oPθ(1)⇒θ N (0, I−1

θ ),

where Iθ = Eθ[ℓ̇θ ℓ̇
′
θ], Iγ = Eθ[ℓ̇γ ℓ̇

′
γ ], Iζ = Eθ[ℓ̇ζ ℓ̇

′
ζ ], and I ′ζγ = Iγζ = Eθ[ℓ̇γ ℓ̇

′
ζ ]. Thus, with A

denoting the first k columns of the m×m identity matrix,

√
n(γ̂ − γ) =

1√
n
A′I−1

θ

n∑
i=1

ℓ̇θ(Yi) + oPθ(1)⇒θ N (0,A′I−1
θ A)

and equivalently, from taking the inverse of the matrix, with Îγ = Iγ − IγζI
−1
ζ Iζγ

√
n(γ̂ − γ) =

1√
n
Î−1
γ

n∑
i=1

(
ℓ̇γ(Yi)− IγζI

−1
ζ ℓ̇ζ(Yi)

)
+ oPθ(1) (1)

=
1√
n
Î−1
γ

n∑
i=1

ℓ̂γ(Yi) + oPθ(1)⇒θ N (0, Î−1
γ ).
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Note that ℓ̂γ is the residual of the projection of ℓ̇γ on ℓ̇ζ , so Eθ[ℓ̂γ(Yi)ℓ̇ζ(Yi)] = 0.

2.2. Bias under local misspecification

Suppose the baseline model Pθ is embedded in a semiparametric model Pθ,η , where η ∈H
is nonparametric and Pθ,η0 = Pθ . Importantly, the semiparametric specification here is such the
parameter of interest ψ(Pθ,η) remains γ, even if η ̸= η0.

Let ηt, t ∈ [0,∞) be one dimensional paths through H starting at η0. By Lemma 25.14 in
van der Vaart (1998), under the assumption of differentiability in quadratic mean at t= 0, these
paths are characterized by their corresponding score g with Eθ[g(Yi)] = 0, Eθ[g(Yi)

2] <∞,
and

log
n∏

i=1

dPθ,η1/
√

n

dPθ

(Yi) =
1√
n

n∑
i=1

g(Yi)− 1
2
Eθ[g(Yi)

2] + oPθ(1). (2)

Denote the set of scores that are obtained in this manner by the tangent set Ṗθ for η. We are
exclusively concerned with such local misspecifications of the baseline model, that is, under
DGPs where ηt = η1/√n, as in the above equation.

Now for any g, we can characterize the local bias of γ̂ induced by such local misspecification
using contiguity and LeCam’s Third Lemma (Example 6.7, page 90 in van der Vaart (1998)).
In particular,(

√
n(θ̂− θ), log

n∏
i=1

dPθ,η1/
√

n

dPθ

(Yi)

)

⇒θ N
((

0
− 1

2
Eθ[g(Yi)

2]

)
,

(
I−1
θ ·

Eθ[I
−1
θ ℓ̇θ(Yi)g(Yi)] Eθ[g(Yi)

2]

))
,

so that under Pθ,η1/
√

n
,

√
n(θ̂− θ)⇒θ,η1/

√
n
N (Eθ[I

−1
θ ℓ̇θ(Yi)g(Yi)], I

−1
θ ) (3)

and
√
n(γ̂ − γ)⇒ θ,η1/

√
n
N (Eθ[A

′I−1
θ ℓ̇θ(Yi)g(Yi)],A

′I−1
θ A)

∼ N (Eθ[Î
−1
γ ℓ̂γ(Yi)g(Yi)], Î

−1
γ ).

Thus, unless Eθ[ℓ̂γ(Yi)g(Yi)] = 0 for all g ∈ Ṗθ , ignoring the misspecification leads to non-zero
local biases.

2.3. Semiparametrically efficient estimation

Consider paths of the form t 7→ Pθ+at,ηt , as on page 369 in van der Vaart (1998). Then

∂ logdPθ+at,ηt

∂t
|t=0 = a′ℓ̇θ + g = a′γ ℓ̇γ + a′ζ ℓ̇ζ + g

and for ψ(Pθ+at,ηt) = γ + aγt, we find that ∂ψ(Pθ+at,ηt)/∂t|t=0 = aγ . So γ is differentiable
as a parameter on the model if and only if there exists ψ̃ such that

aγ = Eθ[ψ̃(Yi)(a
′
γ ℓ̇γ(Yi) + a′ζ ℓ̇ζ(Yi) + g(Yi))]
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for any a and g ∈ Ṗθ . Setting aγ to zero, we can see that it is necessary that

Eθ[ψ̃(Yi)ℓ̇ζ(Yi)
′] = 0 and Eθ[ψ̃(Yi)g(Yi)] = 0 (4)

for any g ∈ Ṗθ . Any semiparametrically efficient estimator T ∗ of γ has an asymptotically linear
representation in terms of this efficient influence function ψ̃ (equation (25.22) in van der Vaart
(1998))

√
n(T ∗ − γ) =

1√
n

n∑
i=1

ψ̃(Yi) + oPθ(1)⇒N (0,Eθ[ψ̃(Yi)ψ̃(Yi)
′]). (5)

Furthermore, proceeding as in Lemma 25.25 in van der Vaart (1998), with Πγ the orthogonal
projection operator on the closure of the space of square integrable functions (relative to Pθ)
spanned by linear combinations of Ṗθ and elements of ℓζ , we have

ψ̃ = Ĩ−1
γ ℓ̃γ where ℓ̃γ = ℓ̇γ −Πγ ℓ̇γ and Ĩγ = Eθ[ℓ̃γ(Yi)ℓ̃γ(Yi)

′]. (6)

From this definition of the efficient score ℓ̃γ it follows that

Eθ[ℓ̃γ(Yi)ℓ̇γ(Yi)
′] = Eθ[ℓ̃γ(Yi)ℓ̃γ(Yi)

′] = Ĩγ . (7)

2.4. Model augmentation

Now consider an augmented modelQθ,δ with parameters θ ∈ Rm and δ ∈ Rk. The augmented
model is constructed so that it encompasses the baseline model: Qθ,0 = Pθ and has a score
(ℓ̇′θ, ℓ̇

′
δ)

′ satisfying

ℓ̇δ(Yi) = ℓ̇γ(Yi)− ℓ̃γ(Yi) (8)

at θ and δ = 0, that is, the score associated with the additional parameter is the difference
between the score for the parameter of interest in the baseline model, and the efficient score.

One explicit construction for Qθ,δ (cf. Example 25.16 in van der Vaart (1998)) is

q(y|θ, δ) = c(θ, δ)k(y, θ, δ)p(y|θ), (9)

where p(y|θ) is the baseline density under Pθ relative to ν, c(θ, δ) is the normalization constant
chosen so that

∫
q(y|θ, δ)dν(y) = 1, k(y, θ, δ) = k0(δ

′(ℓ̇γ(y)− ℓ̃γ(y))), and k0 is a bounded
nonnegative function with k0(0) = k′

0(0) = 1 such as

k0(z) = 2(1 + e−2z)−1. (10)

Suppose the standard asymptotic expansion for the MLE in the augmented model holds at θ
and δ = 0,

√
n

(
θ̂a − θ

δ̂a

)
=

1√
n

(
Iθ Iθδ
Iδθ Iδ

)−1 n∑
i=1

(
ℓ̇θ(Yi)

ℓ̇δ(Yi)

)
+ oPθ(1)⇒θ N

(
0,

(
Iθ Iθδ
Iδθ Iδ

)−1
)
.

(11)
As in the parametric case without augmentation (equation (1)), the resulting expansion of the
MLE for γ simply involves the residual variation in the score ℓ̇γ , after projecting out variation
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that comes from the nuisance scores ℓ̇ζ and ℓ̇δ . Note that Iδζ = E[ℓ̇δ ℓ̇
′
ζ ] = E[ℓ̇γ ℓ̇

′
ζ ] = Iγζ , Iδ =

Iγδ = Iγ − Ĩγ , and, thus, by a blocked inverse formula,

[Iγζ Iγδ]

(
Iζ Iζδ
Iδζ Iδ

)−1

= [Iγζ Iγ − Ĩγ ]

(
Iζ Iζγ
Iγζ Iγ − Ĩγ

)−1

= [0k×m−k1k],

where 0k×m−k is a k ×m− k matrix of zeros and 1k is a k × k identity matrix. We thus find
that the effective score has variance

Iγ − [Iγζ Iγδ]

(
Iζ Iζδ
Iδζ Iδ

)−1 [
Iζγ
Iδγ

]
= Ĩγ

as required. Explicitly calculating the effective score yields ℓ̃γ , as expected. Thus, the MLE γ̂a

for γ in the augmented model satisfies

√
n(γ̂a − γ) =

1√
n
Ĩ−1
γ

n∑
i=1

ℓ̃γ(Yi) + oPθ(1). (12)

Thus, it is semiparametrically efficient. Note that if (12) holds under Pθ, then by the definition
of contiguity, it also holds under any Pθ,η1/

√
n

satisfying (2), so that also

√
n(γ̂a − γ) =

1√
n
Ĩ−1
γ

n∑
i=1

ℓ̃γ(Yi) + oPθ,η1/√n
(1)

and by (4) and (6), γ̂a is asymptotically locally unbiased under local misspecification.
From (6), we have that the asymptotic variance of any efficient estimator T ∗ satisfies

Eθ[ψ̃(Yi)ψ̃(Yi)
′] = Ĩ−1

γ

and

ℓ̃γ = Eθ[ψ̃(Yi)ψ̃(Yi)
′]−1ψ̃. (13)

Thus, to obtain ℓ̃γ for the construction of the augmented model it suffices to know the asymp-
totically linear representation of the semiparametrically efficient estimator T ∗ of γ.

2.5. Asymptotics for posterior in augmented model

Let Y = {Y1, . . . , Yn} denote a sample of i.i.d. observations and Π(θ, δ|Y ) and Π(γ|Y )
denote the posterior distributions for (θ, δ) and γ that correspond to a prior density π(θ, δ) and
a likelihood function implied by the augmented model Qθ,δ .

The following theorem shows that under local misspecification of the baseline model, the
posterior for γ in the augmented model has the same asymptotic approximation as the posterior
for γ in a Bayesian semiparametric model where a semiparametric BvM (see, for example,
Bickel and Kleijn (2012)) holds.

THEOREM 1: Assume
(i) in the encompassing semiparametric model, there exists a semiparametrically efficient

estimator T ∗ for γ satisfying (4)-(7);
(ii) the asymptotic expansion of the MLE in the augmented model in (11) holds;
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(iii) the augmented model is differentiable in quadratic mean at θ and δ = 0 with nonsingular
Fisher information matrix and for any ϵ > 0 there exists a sequence of tests ϕn satisfying

EQθ,0
ϕn(Y )→ 0, sup

||(θ̃,δ)−(θ,0)||>ϵ

EQ
θ̃,δ

(1− ϕn(Y ))→ 0;

(iv) the prior density π is positive and continuous at θ and δ = 0.
Then,

dTV

(
Π(γ|Y ),N (γ̂a, 1

n
Ĩ−1
γ )
)
= oPθ,η1/√n

(1)

for smooth paths ηt satisfying (2), where dTV denotes the total variation distance.

PROOF: Under assumptions (iii) and (iv), the Bernstein-von Mises (BvM) theorem (Theo-
rem 10.1 in van der Vaart (1998)) applies under correct specification. The BvM theorem and the
discussion on the alternative centering in the BvM on p. 144 in van der Vaart (1998) combined
with the asymptotic MLE expansion assumed in (ii) yields

dTV

(
Π(θ, δ|Y ),N

(
(θ̂a, δ̂a), 1

n

(
Iθ Iθδ
Iδθ Iδ

)−1
))

= oPθ(1).

Since the total variation distance between two marginal distributions is bounded by the total
variation distance between the corresponding joint distributions, it follows that

dTV

(
Π(γ|Y ),N (γ̂a, 1

n
Ĩ−1
γ )
)
= oPθ(1).

The theorem’s claim follows by contiguity of Pθ and Pθ,η1/
√

n
.

Q.E.D.

Let us briefly comment on elementary sufficient conditions for some of the assumptions
in the theorem. It follows from Lemmas 10.3-6 in van der Vaart (1998) that the existence of
uniformly consistent tests assumed in (iii) is implied by quadratic mean differentiability, iden-
tifiability, and compactness of the parameter space. The asymptotic expansion of the MLE
assumed in (ii) is implied by quadratic mean differentiability, nonsingularity of the Fisher in-
formation, consistency of the MLE estimator, and some integrability conditions, see Theorem
5.39 in van der Vaart (1998).

3. AUGMENTED POSTERIOR SIMULATION

3.1. Normalization constants, auxiliary latent variables, and acceptance sampling

The baseline or original likelihood contribution for observation Yi is denoted by p(Yi|θ). To
accommodate models with covariates one could add the covariates in the conditioning set of
p(Yi|θ); we omit this for notation simplicity. The likelihood contribution of observation Yi in
the augmented model is denoted by q(Yi|θ, δ) defined in (9) and (10) where the augmentation
factor k(Yi, θ, δ) has a finite upper bound k̄ and c(θ, δ) is a difficult to compute normalization
constant. The posterior distribution for the augmented model is given by

π(θ, δ|Y )∝
n∏

i=1

q(Yi|θ, δ)π(θ, δ), (14)
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where π(δ) and π(θ) are the prior densities. Note that standard MCMC algorithms, such as
a Metropolis-Hastings algorithm, do note require the normalization constant p(Y ) but would
require c(θ, δ).

Following Rao, Lin, and Dunson (2016), we use auxiliary latent variables and acceptance
sampling to avoid computation of c(θ, δ) in the posterior simulator. Let us represent the distri-
bution q(Yi|θ, δ) as if Yi is obtained by an acceptance sampling algorithm with target density
q(·|θ, δ), proposal density p(·|θ), and rejected draws Ỹi = {Ỹi,j , j = 1, . . . , Ji}. In this accep-
tance sampling algorithm, a proposal Ỹi,j is simulated from p(·|θ) and rejected with probability
1− k(Ỹi,j , θ, δ)/k̄. For k as in (10), k̄ = 2, so the rejection probability is not very large. The
joint distribution of the accepted draw and the rejected draws can be expressed as follows,

π(Yi, Ỹi|θ, δ) = p(Yi|θ)
k(Yi, θ, δ)

k̄
·

Ji∏
j=1

p(Ỹi,j |θ)

(
1− k(Ỹi,j , θ, δ)

k̄

)
. (15)

It is easy to check that the marginal density for Yi is the target

q(Yi|θ, δ) =
∞∑

Ji=0

∫
π(Yi, Ỹi|θ, δ)dỸi,1 · · ·dỸi,Ji

.

Therefore, the joint posterior for θ, δ and the auxiliary latent variables Ỹ = {Ỹi, i= 1, . . . , n},

π(θ, δ, Ỹ |Y )∝
n∏

i=1

π(Yi, Ỹi|θ, δ)π(θ, δ) (16)

implies the marginal posterior of interest π(θ, δ|Y ) in (14) and the draws (θm, δm, Ỹ m), m=
1, . . . ,M from a Markov chain with stationary distribution (16) can be used to approximate
(integrals with respect to) π(θ, δ|Y ).

3.2. MCMC

An MCMC algorithm for simulation from (16) consists of two main blocks: (i) (θm, δm)∼
π(θ, δ|Ỹ m−1, Y ) and (ii) Ỹ m ∼ π(Ỹ |δm, θm, Y ). For the block π(θ, δ|Ỹ m−1, Y ) one could
use a Metropolis-Hastings algorithm with a target proportional to (16); in our applications we
use HMC for this block as implemented in the Matlab HMC package. To simulate from block
π(Ỹ |δm, θm, Y ) we run the acceptance sampling algorithm described above (15) for each i
using (δm, θm) to obtain the rejected draws Ỹ m

i . The accepted draw can be ignored as it is
independent of the rejected draws and the distribution of the rejected draws Ỹ m

i is proportional
to (15) as desired.

The MCMC algorithm is implemented in Matlab for a generic baseline model for which the
user needs to supply the following functions: logarithms of the baseline likelihood and prior
and their derivatives, a function that simulates Yi from the baseline model, scores and efficient
scores and their derivatives.



LOCALLY ROBUST BAYESIAN INFERENCE 9

4. APPLICATIONS

4.1. Monte Carlo Simulation for Weibull Regression

A Weibull regression model, for a random sample of responses yi and covariate vectors xi,
i= 1, . . . , n, is given by

p(yi|xi, α,β) = (α/λ)(yi/λ)
α−1 exp(−(yi/λi)

α), where λi = exp(β′xi))/Γ(1 + 1/α).

A typical application of the Weibull regression model involves durations yi whose baseline
hazard function is of the Weibull form, and the individual heterogeneity in durations is mod-
eled by the factor of proportionality exp(β′xi). The conditional expectation and variance of
responses are given by

E(yi|xi) = exp(β′xi) and σ2(xi) = exp(2β′xi) · [Γ(1 + 2/α)/Γ(1 + 1/α)2 − 1].

The encompassing semiparametric model for the parameter of interest β is defined by the
conditional moment restriction E(yi|xi) = exp(β′xi). In the semiparametric version of the
model, no parametric form of the baseline hazard is specified, but the coefficient β continues to
have the same interpretation of measuring how the regressors affect the baseline hazard through
the factor exp(β′xi).

Even under local misspecification of the baseline Weibull model, the conditional variance
continues to equal to σ2(xi) to first order, so the semiparametrically efficient estimator is sim-
ply the corresponding weighted nonlinear least squares estimator β̂ which solves

n∑
i=1

xi

[
yi exp(−β̂′xi)− 1

]
= 0.

In light of (13), the efficient score is thus given by

ℓ̃β(yi) = xi (yi − exp(β′xi)) exp(β
′xi)/σ

2(xi).

In the following Monte Carlo study we illustrate that our suggested model augmentation
moves the posteriors of β closer to a normal distribution with mean equal to the semiparamet-
rically efficient estimator and variance equal to the variance of the semiparametrically efficient
estimator.

We simulate 100 datasets of size n = 250 and n = 1000 from the (correctly specified)
Weibull regression model with parameters α = 0.5, β = (1,1), xi1 = 1, and xi2 ∼ N (0,1).
The priors for βk and log(α) are normal with mean 0 and variance 100. The prior for the aug-
mentation parameter δ is a normal centered at zero; the prior variance is set to an estimate of
the asymptotic variance of the MLE for δ under the assumption of no misspecification (δ = 0).

To estimate the baseline model we use the Matlab HMC package. The augmented model is
estimated by the MCMC algorithm described in Section 3.2. We found the sampler to mix well;
computing times for the augmented model with n= 250 are less than a minute on a laptop.

Table I shows the Monte Carlo averages of the difference between the semiparametrically
efficient estimator and the posterior mean E(β|Y ) and the ratio of the posterior standard devi-
ation to the standard deviation of the semiparametrically efficient estimator in the baseline and
augmented models.

As can be seen from the table, in the augmented model, the Bayesian estimator is on average
closer to the semiparametrically efficient estimator and the posterior standard deviation is larger
and closer to the standard deviation of the semiparametrically efficient estimator, as suggested
by our theoretical results.
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TABLE I

MONTE CARLO AVERAGES: WEIBULL REGRESSION

n=250 n=1000

Baseline Augmented Baseline Augmented

|β̂1 −E(β1|Y )| 0.03 0.03 0.02 0.01
|β̂2 −E(β2|Y ) 0.05 0.03 0.03 0.01

sd(β1|Y )/sd(β̂1) 0.97 1.10 0.96 1.02
sd(β2|Y )/sd(β̂2) 0.90 1.05 0.90 0.99

4.2. Regression with Student’s t errors

A linear regression model with Student’s t errors is recommended for modeling heavy tailed
data in most Bayesian econometrics textbooks. It is also prescribed as a tool to introduce indi-
vidual specific variances in normal linear regression, as a Student’s t distribution can be repre-
sented as a scale mixture of normal distributions, see, for example, Geweke (2005), Greenberg
(2012), Koop (2003), and Geweke (1993). In this model, for a random sample of responses yi
and covariate vectors xi, i= 1, . . . , n,

yi = x′
iβ + ϵi, ϵi/σ ∼ ps(·), ps(t) =

Γ((ν + 1)/2)√
νπΓ(ν/2)

(
1 +

t2

ν

)−(ν+1)/2

.

In the application below we treat the regression coefficients β as the parameter of interest and
the scale σ and the degrees of freedom ν as nuisance parameters.

In a homoskedastic linear regression model with an unknown distribution of the errors, the
ordinary least squares (OLS) estimator is semiparametrically efficient with the efficient score
given by

ℓ̃β(yi) = xi(yi − x′
iβ)

1

var(ϵi)
.

In the Student’s t model, var(ϵi) = σ2ν/(ν − 2), and this also holds to first order under local
misspecification. We can therefore make this substitution in the efficient score.

If only the first k coefficients in β are of interest, γ = [1k 0]β, then

ℓ̃γ(yi) = [1k H
−1
k,kHk,−k]xi(yi − x′

iβ)
1

var(ϵi)
, E(xix

′
i)

−1 =

(
Hk,k Hk,−k

H−k,k H−k,−k

)
. (17)

Figure 1 shows how the augmentation alters the Student’s t density under different values of
the augmentation parameter for the no regressors case.

4.2.1. Monte Carlo Simulation

In this subsection, we present a Monte Carlo study illustrating that the model augmentation
moves the posteriors of γ closer to a normal distribution with mean equal to the semiparamet-
rically efficient estimator and variance equal to the variance of the semiparametrically efficient
estimator.

We simulate 100 datasets of size n= 250 and n= 1000 from a Student’s t regression with
DGP parameters σ = 2, ν = 2.5, β = (1,1), xi1 = 1, and xi2 ∼ N (0,1). These values are
motivated by the application presented in the next section. The priors for β1 and log(σ) are
normal with mean 0 and variance 100. The prior for log(ν−2) is normal with mean log(2) and
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FIGURE 1.—The augmented densities for xi = 1, β = 0, σ = 2, ν = 2.5, and δ ∈ {0,1,10}.

variance 1. The prior for the augmentation parameter δ is a normal centered at zero; the prior
variance is set to an estimate of the asymptotic variance of the MLE for δ under the assumption
of no misspecification (δ = 0).

TABLE II

MONTE CARLO AVERAGES: STUDENT’S t REGRESSION

n=250 n=1000

Baseline Augmented Baseline Augmented

|β̂1 −E(β1|Y )| 0.17 0.11 0.09 0.04
|β̂2 −E(β2|Y ) 0.14 0.12 0.09 0.04

sd(β1|Y )/sd(β̂1) 0.68 1.08 0.63 1.07
sd(β2|Y )/sd(β̂2) 0.72 1.15 0.64 1.08

Table II shows the Monte Carlo averages of the difference between the semiparametrically
efficient estimator and the posterior mean E(β|Y ) and the ratio of the posterior standard devi-
ation to the standard deviation of the semiparametrically efficient estimator in the baseline and
augmented models. As was the case in the Weibull regression case, we again find that the aug-
mentation moves the posteriors towards the semiparametrically efficient estimator and makes
the posterior standard deviation larger and closer to the standard deviation of the semiparamet-
rically efficient estimator, as suggested by our theoretical results.

4.2.2. Application to Incumbency Advantage

In this application we use data on American congressional elections 1956-1994 to learn about
the degree of incumbency advantage, previously analyzed by Jackman (2000) using Bayesian
methods. The dataset includes n= 5090 observations. The dependent variable is the proportion
of the two-party vote won by the Democratic candidate in a district. The covariates include a
constant, the proportion of the two-party vote won by the Democratic candidate in the previous
election, the previous winning party, indicators for Democratic and Republican incumbency,
and 19 dummy variables for time effects. Jackman (2000) argues that for these data, the linear
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regression errors are heavy tailed (as can be seen in the quantile plots presented in Figure 2 and
Jackman (2000)) and that the use of a Student’s t distribution is more appropriate. We treat the
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FIGURE 2.—Quantile-quantile plots for OLS residuals, incumbency advantage data.

time effect coefficients as nuisance parameters in the augmented model and use equation (17)
for the efficient score. The prior distributions are as in the Monte Carlo simulation. Despite the
larger sample size, the sampler still mixes well, see Appendix A for trace plots.

Figure 3 shows the marginal posterior distributions of the regression coefficients in the base-
line and augmented models. Additionally, a normal distribution with mean equal to the OLS
estimator and variance equal to the OLS estimator variance is displayed. As can be seen from
the figure, the augmented posteriors (solid lines) are moved towards the OLS (dashed lines)
relative to the baseline posteriors, as desired.

Figure 4 displays the marginal prior and posterior distributions of the augmentation parame-
ters δ. The posterior strongly prefers non-zero values of δi for the first two coordinates, suggest-
ing that the baseline model is misspecified. In fact, the evidence for misspecification here is so
overwhelming that it would be sensible to revisit the specification of the baseline model. Such
an automatic diagnostic of potential misspecification beyond local deviations accommodated
by our theory is another appeal of estimating the augmented model.

As discussed in the introduction, if the sole aim is to obtain semiparametric efficient infer-
ence about the regression parameters, one could simply specify the disturbances ϵi as Gaussian.
But suppose in addition to learning about the degree of incumbency advantage, the researcher
uses the estimated model to predict election outcomes. Let us illustrate that the augmented re-
gression model with the Student’s t errors can lead to predictions that are substantively different
from those generated by the Gaussian linear regression model.

Specifically, consider the probability that a democratic candidate wins in a hypothetical elec-
tion n+ 1 with the following covariate values: xn+1,2 ∈ {31,33,35,37,39} (vote share of the
previous democratic candidate), xn+1,3 = −1 (previous winner is a Republican), xn+1,4 = 0
(the democratic candidate is not incumbent), xn+1,5 = 1 (the republican candidate is incum-
bent), and xn+1,j = 0 for j = 6, . . . ,24. In the Gaussian model, the probability that the demo-
cratic candidate wins is computed using a zero mean normal distribution for the regression
error and the OLS estimator of the coefficients and the standard deviation of the regression
error. In the baseline and augmented Bayesian models, the probability that the democratic can-
didate wins is the posterior probability that yn+1 > 50. The probabilities are compared in Table
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FIGURE 3.—Estimation results for incumbency advantage: posteriors of regression coefficients in the baseline and
augmented models; normal distribution centered at the OLS estimator with the corresponding variance.
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FIGURE 4.—Estimation results for incumbency advantage: marginal priors and posteriors for δ.
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TABLE III

PREDICTION FROM GAUSSIAN VS. AUGMENTED t MODEL

Previous
dem. vote
share

Gaussian,
P (y > 50)

Augmented
model,
P (y > 50)

Baseline
model,
P (y > 50)

31 0.003 0.010 0.007
33 0.005 0.012 0.010
35 0.009 0.015 0.013
37 0.015 0.020 0.019
39 0.025 0.025 0.026

III. As can be seen from the table, the difference between predictions from the Gaussian linear

regression and the augmented Student’s t model can be substantial when the predicted proba-

bilities are small, and given the overwhelming evidence for fat tailed disturbances presented in

Figure 2, the latter are arguably preferable.

In summary, our augmented model delivers coefficient estimates that are closer to a more

robust semi-parametric approach and predictions that rely on a better fitting Student’s t distri-

bution for the regression errors.

5. CONCLUSION

In this paper, we propose a method to robustify Bayesian estimation of parametric models.

The method applies to settings where the baseline parametric model can be encompassed into

a semiparametric model with a known semiparametrically efficient estimator. We augment the

baseline likelihood by a multiplicative factor that involves scores for the baseline model, the

efficient scores for the encompassing semiparametric model, and an auxiliary parameter that

has the same dimension as the parameter of interest. We show that under local misspecification

this augmentation asymptotically results in a marginal posterior for the parameter of interest

that is normal with mean equal to the semiparametrically efficient estimator and variance equal

to the semiparametric efficiency bound; thus, our approach delivers the same asymptotic results

as semiparametric BvM theorems, but without the computational and theoretical difficulties

inherent in the use of nonparametric priors.
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APPENDIX A: AUXILIARY DETAILS FOR APPLICATION

A.1. Regression with Student’s t errors. Incumbency advantage data.
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FIGURE A.1.—MCMC trace plots for parameters of a baseline (nonaugmented) regression with Student’s t errors
estimated on incumbency advantage data.
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FIGURE A.2.—MCMC trace plots for parameters of an augmented regression with Student’s t errors estimated
on incumbency advantage data.
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