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We propose a tractable semiparametric estimation method for structural dy-
namic discrete choice models. The distribution of additive utility shocks in the
proposed framework is modeled by location-scale mixtures of extreme value dis-
tributions with varying numbers of mixture components. Our approach exploits
the analytical tractability of extreme value distributions in the multinomial
choice settings and the flexibility of the location-scale mixtures. We implement
the Bayesian approach to inference using Hamiltonian Monte Carlo and an ap-
proximately optimal reversible jump algorithm. In our simulation experiments,
we show that the standard dynamic logit model can deliver misleading results,
especially about counterfactuals, when the shocks are not extreme value dis-
tributed. Our semiparametric approach delivers reliable inference in these set-
tings. We develop theoretical results on approximations by location-scale mix-
tures in an appropriate distance and posterior concentration of the set identified

utility parameters and the distribution of shocks in the model.

KEYWORDS: Dynamic Discrete choice, Bayesian nonparametrics, set identi-
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jump.

1. INTRODUCTION

A dynamic discrete choice model is a dynamic program with discrete controls. These models
have been used widely in various fields of economics, including labour economics, health
economics, and industrial organization. See, for example, Rust (1994) and Aguirregabiria
and Mira (2010) for literature surveys. In such models, a forward-looking decision-maker

chooses an action from a finite set in each time period. The actions affect decision-maker’s
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per-period payoff and the evolution of state variables. The decision-maker maximizes the

expected sum of current and discounted future per-period payofs.

Some state variables in these models are usually assumed to be unobserved by the econo-
metrician (see, for example, page 1008 of Rust (1987) for further discussion). Most of the
previous work on estimation of dynamic discrete choice models imposes specific paramet-
ric assumptions on the distribution of the unobserved states or utility shocks. The most
commonly used parametric assumption is that the unobserved states are extreme value in-
dependently identically distributed (i.i.d.). As shown in Rust (1987) and Rust (1994), under
this assumption, the integrals over the unobserved states in the likelihood and the Bellman
equations have closed form expressions, which considerably alleviates the computational bur-
den of the model solution and estimation. At the same time, it is well known in the literature
that imposing parametric distributional assumptions can be problematic, see, for example,

Manski (1999). Thus, it is desirable to relax these assumptions if possible.

There are several previous papers that treat the unobserved state distribution nonparametri-
cally for the binary choice case. Aguirregabiria (2010) shows the nonparametric identification
of the shock distribution under particular assumptions on the per-period payoffs. Norets and
Tang (2013) show that under an unknown distribution of the unobserved state and discrete
observed states, the utility parameters and the unobserved state distribution are only set-
identified. They also show how to compute the identified sets. Buchholz et al. (2020) provide
identification results for the per-period payoffs when the observed state is continuous. The
framework of Christensen and Connault (2023) for structural models expressed through a
finite number of moment equalities and inequalities can be used to check the sensitivity of
counterfactuals to the variation of the utility shocks distribution within a neighborhood of
extreme value distribution in dynamic discrete choice models with a finite observed state
space; Rust’s binary choice model of bus engine replacement is used in that paper for illus-

tration.

For the multinomial choice case, Chen (2017) uses exclusion restrictions (a subset of the
state variables affects only current utility, but not state transition probabilities) to obtain

identification and estimation results. In settings without exclusion restrictions, Norets (2011)



SEMIPARAMETRIC BAYESIAN ESTIMATION OF DYNAMIC DISCRETE CHOICE MODELS 3

shows that it is in principle possible to extend the method from Norets and Tang (2013) to

compute the identified set in multinomial case, but it is computationally very difficult.

In this paper, we propose a tractable semiparametric estimation method applicable to the
general multinomial choice case. It is based on modeling the unknown distribution of shocks
by a finite mixture of extreme value distributions with a varying number of mixture compo-
nents. Our approach exploits the analytical tractability of extreme value distributions and
the flexibility of the location-scale mixtures. The unobserved utility shocks can be integrated
out analytically in the likelihood function and the expected value functions, similarly to the
case with extreme value distributed shocks. At the same time, we show that the location-
scale mixtures can approximate densities from a large nonparametric class in an appropriate
distance and that for any given distribution of utility shocks, a finite mixture of extreme
value distributions can deliver exactly the same conditional choice probabilities. Posterior
concentration on the identified sets of utility parameters and the distribution of shocks is an
implication of these results. We implement the Bayesian approach to inference for the model
using Hamiltonian Monte Carlo and an approximately optimal reversible jump Markov chain
Monte Carlo (MCMC) algorithm from Norets (2021). Similarly to Norets and Tang (2013),

frequentist confidence sets for identified sets can also be computed from the MCMC output.

We apply our framework to binary and multinomial choice models. For the binary dynamic
choice model from Rust (1987), our approach delivers estimation results that are consistent
with the previous literature on semiparametric estimation (Norets and Tang (2013)). For the
multinomial choice model of medical care use and work absence from Gilleskie (1998), we
demonstrate how uncertainty about model parameters and counterfactuals increases when
the distributional assumptions on the shocks are relaxed. Moreover, we show that the stan-
dard dynamic logit model can deliver misleading results, especially about counterfactuals,
when the shocks are not extreme value distributed. Our semiparametric approach delivers

reliable inference in these settings.

Even when the distribution of the utility shocks is assumed to be known, parameters and
counterfactuals in dynamic discrete choice models could still be only set identified under a

variety of scenarios such as very flexible specifications of utility functions, lack of exclusion
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restrictions or variation in transitions for the observed state variables, and unknown time
discount factors; see, for example, Rust (1994), Magnac and Thesmar (2002), Norets and
Tang (2013), Abbring and Daljord (2020), and Kalouptsidi et al. (2021). Our estimation
framework does not require any special adjustments to accommodate such scenarios since
parameters and counterfactuals are already set identified under nonparametric specification
of the distribution of shocks.

The rest of the paper is organized as follows. Section 2 describes the general model setup.
In Section 3, we introduce our semiparametric framework. In Section 4, we describe the
Bayesian estimation method. Section 5 presents theoretical results. Sections 6 and 7 contain
the applications. Possible framework generalizations are discussed in Section 8. Derivations,

proofs, and implementation details are given in appendices.

2. GENERAL MODEL SETUP

In the infinite-horizon version of the model, the decision maker maximizes the expected

discounted sum of the per-period payofts

[o.¢]
1 E J oy ;
(1) o ax Ei (;Zoﬁ U (et t+ga€t+g)> a
where d; € {0,1,...,J} is the control variable, z; € X = {1,..., K} is the state variable
observed by the econometrician, ¢, = (&g, €1, - -, € J)T € R’*! is the state variable unob-
served by the econometrician, /3 is the time discount factor, and w(zy, d;, €;) is the per-period

payoff. The decision-maker observes both x; and ¢; at time ¢ before making the decision.

Following Rust (1987) and the subsequent literature, we assume that (i) the per-period
payoffs are additively separable in e, u(x;,dy, €;) = u(xy, dy) + €4,; (i) €’s are independent
of other variables and independently identically distributed (i.i.d.) over time according to
a distribution F' with zero mean; (iii) the observed states evolve according to a controlled
Markov chain G with transition probabilities G4 = {Pr(z, |z, = z,d; = j), 1441 € X}
and an initial distribution {Pr(z1), 1 € X }. The utility functions are assumed to depend

on a vector of unknown parameters, § € R%_ that are estimated. Below, we often omit 6 in
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u(zy, di; 0) and related objects such as value functions for notation brevity. As in Rust (1987),
Gilleskie (1998), and most of the literature, the time discount factor is assumed to be known;
it is usually calibrated to imply a reasonable value of a risk free annual interest rate. In most
applications, the observed state transition probabilities are estimated in a first stage prior
to estimation of the preference parameters 6 since it can be done directly from the observed
state transitions with a relatively high precision and without solving the dynamic program.
In line with that and for notation brevity we treat G as known and fixed. Extensions of our

results and methodology to continuous X and unknown G are discussed in Section 8.

Under mild regularity conditions (Bhattacharya and Majumdar (1989)), the decision problem

in (1) admits the following Bellman representation
(2) Qlz)= [ max [u(m,j) + BGLQ + € | dF (¢),

where Q is called the EFmax function and G7Q denotes E(Q(xsy1)|zs = x,d; = j). The
conditional choice probability (CCP) can be expressed as

(3) p(d|z) = / 1{u($, d) + BGIQ + ¢4 > u(z, ) + BGIQ + ej,‘v’j}dF(e).

For a panel of observations, D" = {zy,dy, i = 1,...,n,t =1,..., T}, of n decision makers
over T time periods, the partial likelihood function (with the fixed G pre-estimated from

the observed transitions as is commonly done in practice) can be expressed as
(4) log L(D") =Y " log p(di|a).
it

Rust (1987) proposed to solve the dynamic optimization problem by first iterating on the
Bellman equation (2) to get close to the fixed point () and then using a Newton method
that quickly converges to the fixed point from a close starting point. With () at hand,
one can compute the CCPs in (3) and evaluate the likelihood function at a given (u; 5; G).
Alternatively, Su and Judd (2008) proposed to use constrained optimization to maximize the

likelihood function subject to (2). In either scenario, assuming that e;’s are i.i.d. Gumbel



6 ANDRIY NORETS AND KENICHI SHIMIZU

(or extreme value type I) delivers analytical expressions for the integrals in (2) and (3),

eu(z,d)+BGLQ J

d
v Q($) _ IOg eu(x,d)-hBGzQ'
7 wl(zi ) = E

) pldr) =

In the resulting dynamic logit specification, the computational burden of the model solution
and estimation is considerably alleviated. Hence, the dynamic logit is predominantly used
in applications of the estimable dynamic discrete choice models. At the same time, the
econometrics literature suggests that the distributional assumptions could be problematic in
general, see, for example, Manski (1999). In the following section, we specify a non-parametric
model for the distribution of shocks for the general multinomial choice case that provides

analytical simplifications comparable to those of the dynamic logit.

3. SEMIPARAMETRIC MODEL

Rather than making a particular parametric assumption, we model the distribution of un-
observed states using a flexible mixture specification. In order to reduce the number of
parameters, we use an innocuous normalization € = 0 (the agent’s decisions and value
functions do not change if €, is subtracted from the per-period payoff u(zy,d;, €;) for all
dy €{0,1,...,J}).

For ;1 € R? and o > 0, let us define a multivariate Gumbel density by

J
©)  ozmo)=]] 20 (%) where 6(z;) = e~

j=1

is the univariate Gumbel density and ~ is the Euler-Mascheroni constant. Some relevant

properties of the Gumbel distribution are outlined in Appendix C.2.
For j, € R, op € Ry, wy € [0,1], k=1,...,m, and > ;"  wp = 1, we model the unknown

density by a location-scale mixture of Gumbel densities

(7) € ~ Zwm(';M,Uk),
k=1
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with a variable number of mixture components m for which a prior distribution on the
set of positive integers is specified. Mixture models are extensively used in econometrics and
statistics literature, see monographs by McLachlan and Peel (2000) and Fruhwirth-Schnatter
(2006) for references. It is well known that location-scale mixtures with a variable or infinite
number of components can approximate any continuous or smooth density arbitrarily well.
For example, Bayesian models based on normal mixtures deliver optimal up to a log factor
posterior contraction rates in adaptive estimation of smooth densities (Rousseau (2010), Shen
et al. (2013), and Norets and Pelenis (2022)). To develop intuition for this type of results
note that the standard nonparametric density estimator based on kernel ¢ is a special case of
(7), or, alternatively and more in line with the actual proofs, the expectation of the standard
kernel density estimator is a continuous mixture that can be discretized into a special case
of (7). Thus, it is reasonable to expect that the specification (7) is very flexible. Indeed, in
Section 5, we show that it can approximate smooth multivariate densities arbitrarily well in
an appropriate distance so that the conditional choice probabilities and the Emax function
implied by the model with (7) approximate those from the model with an arbitrary smooth

density for €.

The model specification with (7) also possesses attractive analytical properties. If a normal-
ization € = 0 is not imposed and (.J + 1)-dimensional version of (7) is used, then @ and p
could be expressed as mixtures of the appropriately recentered and rescaled expressions from
the dynamic logit model (5). However, even if the normalization €, = 0 is imposed, which is
preferred as it reduces the dimension of the distribution we model nonparametrically, closed

form expressions for () and p are still available. They are presented in the following lemma.

LEMMA 1 Suppose € ~ Y " wi¢(; pi, ox). Then,

2 ke Wk exp [—em ] if d=0

2?21 Wy, €XP u(z,d)+BGEQ+pan Ao {1 —exp[—e =]}, if d=1,...,J;

Ok

8)  pldr) =
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9) Qz) = Zwkak [Agz + El(e™*=)], where E1(z) = /OO et /tdt,

k=1

J . j ) 0
Aue =log} exp (u(:w) +§%Q+u;k) and ar, — u(x,O);; BGLQ AL
7j=1

The derivations of (8) and (9) can be found in Appendix A. The derivatives of (8) and (9)
that are useful for the model solution and estimation are given in Appendix C.3. Similarly to
Rust (1987), we obtain the solution of the Bellman equation (9) by a Newton-Kantorovich
method described in Appendix C.1.

4. INFERENCE
4.1. Motivation and Overview of the Bayesian Approach

In estimation of models based on location-scale mixtures with a variable number of com-
ponents, the econometrician faces several problems. First, the scale parameters need to be
bounded away from zero; otherwise, the likelihood function is unbounded. Second, the like-
lihood function is a rather complex function of parameters with multiple modes. Third, the
number of mixture components needs to be selected in the estimation procedure. Finally,
there is usually considerable uncertainty about the estimated parameter values and it should

be taken into account in model predictions and counterfactual analysis.

The Bayesian approach to inference and the associated simulation methods are well suited
for solving these problems. Prior distributions can provide soft constraints for the scale
parameters and an appropriate penalization for the number of mixture components or model
complexity. MCMC methods can successfully explore very complex posterior or likelihood
surfaces. Posterior predictive distributions for objects of interest automatically incorporate

the uncertainty about parameter values including the number of mixture components.
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4.2. Normalizations

In addition to the normalization €y, = 0, the scale of ¢, can be innocuously normalized.
Instead, to simplify the MCMC algorithm we impose a location and scale normalization on
the parameters of the per-period payoffs and keep the location and scale of (7) unrestricted.

Specifically, consider a linear in parameters utility specification
u(xy, J, €;0) = 0; + Zj(It)/QJH:dG + €,

where z;(z;) are known functions of the observed state variables. In this specification, the

intercepts 0;, 7 = 0,...,J, can be fixed to arbitrary values as long as the locations of ¢,
7 =1,...,J, are unrestricted.
In applications, we set 6y =0 and 0;, j =1,...,J to é}” , the estimates obtained under the

dynamic logit specification. To normalize the scale of ¢;, we assume that the sign of one of
the coefficients, say 61, is known and we keep this coefficient fixed (to the corresponding
dynamic logit estimate, éj%rl) Thus, the MCMC algorithm produces draws of 09,4, and
the mixture parameters (i1,,,m) in (7). For comparisons of the estimation results with the
dynamic logit estimates and the identified sets in Norets and Tang (2013), the parameter

draws are renormalized for reporting as follows

(10)  s- (é% + Z Wit 0%, 9J+2:dg) ;
k=1
where the addition of >~} | wifk to the intercepts corresponds to the zero mean for shocks

and the scale factor is defined by the mixture parameters
s =log2/Elenl(én > Mz,)],

where €1 = €1 — > 1o Wik, Mz, denotes the median of &, and ey ~ > - wid(; 1k, O%)-
There are many possible scale normalizations. The particular scale normalization we use
here reduces to the one introduced by Norets and Tang (2013) for the binary choice case.

Let us emphasize that the normalizations discussed above are innocuous for estimation and
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counterfactual analysis as long as the assumed sign of 6, is correct.

4.3. Priors

Let us introduce the prior distributions for the parameters of the mixture in (7). We use the

following prior distributions on the number of mixture components and the mixing weights,

(11) II(m) e‘Amm(logm)T,
(12)  II(wy,...,wn|m) = Dirichlet(a/m, ..., a/m),

where the hyperparameters a, A , and 7 are specified in the applications below. For the

ms
theoretical results obtained in the present paper, we only need I1(m) > 0, Vm and full support
on the simplex for Il(wy,...,w,|m). Nevertheless, the functional forms in (11) and (12)
perform well in applications and deliver optimal posterior contraction rates in nonparametric
multivariate density estimation by mixtures of normal distributions, see, for example, Shen
et al. (2013) and Norets and Pelenis (2022). We allow the scale parameter oy to have a
multiplicative part o that is common across the mixture components: o, = 5 - 0. This
multiplicative specification performs well in a variety of applications of location-scale mixture
models (see, for example, Geweke (2005)) and is also important for the aforementioned

optimal posterior concentration results for mixtures of normals. In the applications, we use

finite mixtures of normals as flexible priors for log o, log 65 and the location parameters ;.

4.4. MCMC Algorithm

Our MCMC algorithm for simulating from the model posterior distribution combines Hamil-
tonian Monte Carlo (HMC) for simulating parameters conditional on the number of mixture
components and an approximately optimal reversible jump algorithm from Norets (2021) for
simulating the number of mixture components. HMC is a very popular and efficient MCMC
algorithm; see, for example, Neal (2012) for an introduction. HMC requires only evaluation
of the likelihood and the prior and their derivatives. The proposals in HMC are obtained

following the Hamiltonian dynamics on the parameter space that describe the movement
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of a puck on a friction-less surface with some initial random momentum. For implementing
the HMC step of the algorithm we utilize the HMC sampler from the Matlab Statistics and
Machine Learning toolbox. The package can choose HMC’s parameters, such as a step size,
automatically, and we perform this automatic initialization once for each value of m that we
encounter in the MCMC run. The package works only with unbounded parameters. Hence,
we transform the bounded parameters, such as mixing weights and scales, for the HMC step.
The form of the prior for the transformed parameters and the derivatives of the likelihood

used in the algorithm are reported in Appendix C.

For the reversible jump algorithm, we need to transform the mixing weights into unnormal-
ized weights v, K = 1,...,m, so that they have interpretation under different values of m.
Specifically, conditional on m, wy = v,/ > ;% and the Dirichlet prior on (wy,...,wn)
corresponds to a gamma prior for the unnormalized weights: vx|m ~ Gamma(a/m,1),
k=1,...,m. Let ¥, = (g, 0k, v) and 1, = (6,0,%1,...,1y), where 6 includes model
parameters such as coefficients in the utility functions. With this notation, the likelihood

function is denoted by p(D™|m, ¥1,,).

The following short description of the reversible jump algorithm is adapted from Norets and
Pelenis (2022), see Norets (2021) for more details. Denote a proposal distribution for the
parameter of a new mixture component m+1 by 7,11 (Vma1| D™, ¥1m). The algorithm works
as follows. Simulate proposal m* from Pr(m* = m + 1lm) = Pr(m* = m — 1jm) = 1/2.
If m* = m + 1, then also simulate ¥, 11 ~ Tyt (Vma1| D™, ¥1m). Accept the proposal with
probability min{1, a(m*, m)}, where

_ p(Dn|m*> ¢lm*)H(wlm* m*)H(m*)
PAD™ 110, 10 ) TL (1 [172) T (12)

) 1{m* =m+ 1} . - § )
(13) (ﬁm<wm+1|d}1m, Y) * 1{m =m 1}7m71(¢m’¢1m71, D ) .

Innocuous random relabeling of mixture components increases the acceptance probability
for attempts to delete m-th mixture component (m* = m — 1). Norets (2021) shows that an
optimal choice of the proposal distribution 7, is the conditional posterior p(¢,,+1|D", m +

1,%1,,). The conditional posterior can be evaluated up to a normalization constant; however,
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it seems hard to directly simulate from it and compute the required normalization constant.
Hence, we use a Gaussian approximation to p(¢;,11|D", m + 1,%¢1,,) as the proposal (with
the mean equal to the conditional posterior mode, obtained by a Newton method, and the

variance equal to the inverse of the negative of the Hessian evaluated at the mode).

The algorithm pseudo code is presented below.

Algorithm 1: Estimation Algorithm
Step 1: Pre-estimate/fix the observed state transition probabilities G.
Step 2: Tune HMC hyperparameters for each number of mixture components
m = 1,...,m, where m is a pre-specified positive integer.
Step 3: Initialize the parameters m® and %21(0).
Step 4: Run MCMC by iterating the following two steps.
Output: The posterior draws: {m“),wigm}, (=1,.., L.
for ¢ € {0,1,....,L — 1} do
1) Simulate m“*+Y| ... using optimal reversible jump.
e Propose m* with Pr(m* = m¥ 4+ 1|m®) = Pr(m* = m® — 1jm®) = 1/2.
e If m* = m® + 1, then also simulate z/;ff}z)“ from 7, (-] D", w(z) ).

1m®
o If m* = m® — 1, choose k randomly from {1,...,m} and exchange values of w,(f)
¢
and ;/)fnz@.
e With probability min{1, a(m*, m®)} accept m*1) = m*; otherwise, m“*1 = m.
2) Simulate wiiﬁ)ﬂﬂ ... using HMC.

e Initialize HMC algorithm by the current value wii)ﬂ +1y and the hyperparameters
specific to m = m“*Y_ If HMC hyper parameters have not yet been tuned/obtained
for m = m*1) | then obtain and store them.

e Perform one or several iterations of the HMC algorithm to get wg:éll).

Step 5: Use MCMC draws {m(f), wﬁim} to conduct inference on parameters or

functions of interest.

The Matlab code for the MCMC algorithm and replication instructions for the estimation

results in the applications in Sections 6 and 7 are publicly available.!

https://anorets.github.io/papers/mix_ddcm_code.zip
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5. APPROXIMATION RESULTS AND ASYMPTOTICS

In this section, we show that location-scale mixtures of Gumbel densities can arbitrarily
well approximate densities from a large nonparametric class. These approximation results
combined with the Schwartz (1965)’s theorem imply a posterior consistency result for the set
identified model parameters. We also show that a model with a finite mixture of Gumbels

can exactly match the CCPs from a model with an arbitrary distribution of shocks.

5.1. Approximation Results

Let us first define a distance for distributions of utility shocks: for F; with density f;, 1 = 1, 2,

J
pFLF) = [+ 6DIAE) - fal0lde

This distance is appropriate for our purposes as the Emaz function and the conditional

choice probabilities are continuous in that distance as shown in the following lemma.

LEMMA 2 Suppose (i) |u(x,j)| < u < oo for allz € X and j =0,1,...,J; (ii) under F,
the density for €; — €q is bounded for all j # d; (iii) under F, E(|e;|) is finite for all j. Then,
the Emaz function and the conditional choice probabilities are locally Lipschitz continuous

m F,

sup |Q(z; F) — Q(z; F)| < C - p(F, F),

sup Ip(d|z; F) — p(d|z; F)| < C'- p(F, F),

where constants C' and C' depend on 3, u and the bounds on the densities and moments in

conditions (ii)-(iii).

The lemma holds irrespective of whether the innocuous normalization €y = 0 is imposed.
Its proof is given in Appendix B.

The following lemma shows that densities satisfying smoothness and finite moment conditions
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can be approximated by mixtures of Gumbels in distance p.

LEMMA 3 Let f be a density on R satisfying a moment existence condition

/ il () dpt < oo,

and a smoothness condition

(14)  If(z+h) = f)] < AllaLy(z)e e,

for some T > 0 and an envelope function L¢(-) such that
(15) /(1+|zi|)Lf(z)dz<oo,i:1,...,].

Then, for any § > 0, there exist (m,w, u,0) where m € Z%, w; € [0,1] with 377" w; = 1,
p; €ER, j=1,....m, and 0 > 0 such that

p (f(-),zchb( : ;MJ»U)) < 4.

We conjecture that the smoothness and tail conditions on f in the lemma can be weakened at
the expense of the proof simplicity. The lemma is proved in Appendix B. The proof uses only
smoothness and tail conditions on ¢ that are shown to hold for Gumbel densities in Lemmas
6 and 7 in Appendix B. Thus, Lemma 3 holds for more general location-scale mixtures. These
generalizations do not seem essential and we do not elaborate on them here for brevity.

The final intermediate result that we need for establishing posterior consistency is the conti-
nuity of finite Gumbel mixtures in parameters in distance p, which we present in the following

lemma.

LEMMA 4 Let F' and F? denote two miztures of Gumbel densities on R? with densities
fie) = > wio (e s, o). Then, for a given § > 0 and F', there exists 6 > 0 such that

for any F? with parameters satisfying: |o' — 02| < 0, |w} — wi| < 0, and |pt — 42| < 0,
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k=1,...,m, we have p(F', F?) < §.

5.2. Posterior Consistency

Let us denote the short panel dataset by D" = {dy,zy,t = 1,...,T,i = 1,...,n}; the
observations are assumed to be independently identically distributed over i, with a small
T and a large n. The utility function is parameterized by a vector § € R%, u(x,d;0). Let
PO,F) = {p(d|z;0,F), x € X,d = 0,...,J} denote the collection of the CCPs for the

distribution of shocks F' and parameters 6.

THEOREM 1 Let (0y, Fy) be the data generating values of parameters. Suppose (i) The
observed state space is finite, X = {1,...,K}; (ii) G¢, d =0, ...,J and the distribution of
the initial observed state x;1 are known and fized; (111) Ve € X, 3t € {1,...,T}, such that
Pr(zy =x) > 0; (i) u(z,d;0) is continuous in 0; (v) Fy salisfies the conditions of Lemma
3; (vi) For any d > 0, I[I(Bs(6p)) > 0, where Bs(0y) is a ball with radius 6 and center Oy; (vii)
For any 6 > 0, positive integer m, pu, € R?, 0, >0, w, >0, k=1,...,m, Yo wy =1,

I(Bs(p1, 01,5+« s fomy Oy W1, « -, W—1)|m) > 0. Then, for any 6 > 0,
I1(0, F : || P(6o, Fo) — P(6, F)|| > §|D") — 0 almost surely.

The theorem shows that the posterior concentrates on the set of parameters and distributions
of shocks (0, F) such that their implied CCPs P(f, F') are arbitrarily close to the data
generating CCPs P(6y, Fy). To prove this result we use Schwartz (1965) posterior consistency
theorem: if the prior puts positive mass on any Kullback-Leibler neighborhood of the data
generating distribution then the posterior puts probability converging to 1 on any weak
neighborhood of the data generating distribution. Since X is finite, the convergence in weak
topology and Kullback-Leibler divergence for distributions on {d;,zs,t = 1,...,T} are
equivalent to convergence for vectors {p(d|z), z € X, d = 0,...,J} in a euclidean metric
when G and the distribution of the initial z;; are fixed and satisfy our theorem condition
(iii). Thus, to obtain the conclusion of the theorem we only need to establish that the

prior puts positive probability on any euclidean neighborhood of P(6y, Fy). First, note that
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when u(z,d;0) is continuous in 0, P(6, F') is also continuous in # in our settings, see, for
example, Norets (2010); and, thus, Lipschitz continuity of P(¢,F) in F from Lemma 2
delivers continuity of P(, F') in (0, F'). The finite mixture approximation result in Lemma
3, the continuity of P(6,F) in (0, F'), the continuity of finite mixtures in parameters in
Lemma 4, and the theorem conditions (vi) and (vii) on the priors, imply a positive prior
probability for any neighborhood of P(6y, Fy), and thus, the theorem conclusion. Possible
extensions of the theorem (and the lemmas above) to continuous X and unknown GY are
discussed in Section 8.

Theorem 1 characterizes the support of the posterior in the limit but not its shape, which
can also be of interest. Note that the data depend on (6, F') only through CCPs P(0, F)
and the posterior for CCPs concentrates at P(6y, Fy). Therefore, the posterior for (6, F)
converges to the conditional prior II(0, F'|P) at P = P(6y, Fy) under continuity conditions
on II(0, F|P), see, for example, Plaghborg-Mgller (2019). As the distribution of shocks is an
infinite dimensional object and the solution to the dynamic program does not have a simple
explicit form, it appears difficult to characterize the conditional prior I1(6, F|P), which is
implied by the map P(f, F') and the prior on (6, F'). Nevertheless, we can deduce from our
approximation and continuity results that under the conditions of Theorem 1, for 6 > 0 there

exists 0 > 0 such that 6 € B;(6y) and F € Bs(F) imply P(6, F) € Bs(P(6y, Fy)) and

11(0 € B;(6h), F € B;(Fy))
T1(P € Bs(P(fo, Fv)))

H(@ - Bg(@g),F - BS(FO) P e Bg(P(QO,FO))> =

> 11(6 € B;(6h), F € Bs(Fp)) >0,

which suggests that the conditional prior would not rule out the data generating parameter

values.

5.3. Ezact Matching of CCPs

In this subsection, we show that for a finite observed state space, our model formulation based

on finite mixtures can exactly match the CCPs from a model with an arbitrary distribution

of shocks.
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LEMMA 5 Suppose (i) The observed state space is finite, X = {1,..., K}; (ii) (0o, Fy) are
the data generating values of parameters; (iii) Fy has finite first moments and a density that
is positive on RY. Then there exists a finite mizture of Gumbels F such that P(y, Fy) =
P(6y, F'). An upper bound on the number of mizture components in F depends only on K

and J.

The result in Lemma 5 holds not only for mixtures of Gumbels but more generally for
location-scale mixtures of distributions with finite first moments, which is evident from the
proof presented in Appendix B. Lemma 5 can be used to relax the smoothness assumptions
on [y in the posterior consistency results of Theorem 1. Specifically, conditions (v) in Theo-
rem 1 can be replaced by conditions (iii) in Lemma 5; in the proof, the approximation results
in Lemma 3 can be replaced by the exact CCPs matching results in Lemma 5. Nevertheless,
the approximation results in Lemma 3 have independent value. First, they hold for infinite
and continuous X. Furthermore, they imply that the prior on the distribution of shocks
is flexible in a sense that it puts positive probability on any metric p neighborhood in a
large nonparametric class of distributions, which suggests that the conditional prior for the
distribution of shocks and parameters given CCPs, I1(6, F'|P), is also flexible as discussed
at the end of Section 5.2. Finally, while asymptotically the number of mixture components
is bounded for the exact matching in Lemma 5 and has to increase to infinity for the ap-
proximation results in Lemma 3, in practice, a small number of mixture components delivers
sufficiently good approximations and the exact matching requires a very large number of

mixture components (m = 182 for Rust’s bus engine replacement model).

5.4. Inference for Identified Sets

Norets and Tang (2013) and generalizations of their results to the multinomial case in Norets
(2011) show that the utility parameters 6 and the distribution of shocks F, and, thus, func-
tions of (@, F') such as results of counterfactual experiments, are set identified in the present
settings. Moon and Schorfheide (2012) show that in contrast to the point identified regular
settings, the Bayesian credible sets for set identified parameters do not have frequentist cov-

erage properties and are too small from the classical perspective. Norets and Tang (2013)
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point out in their Section 3.2 that Bayesian and classical inference results can be reconciled
if inference is performed on the identified sets. Kline and Tamer (2016) further study this
approach and Kitagawa (2011) obtain related results under multiple priors for set identified
parameters. In this subsection, we describe how credible and confidence sets for identified

sets can be defined and computed from the output of our MCMC algorithm.

Suppose the data generating values of parameters are (g, Fy) and we are interested in 1y =
g(0o, Fy). The data generating values of CCPs, Py = P(6y, Fo), can be consistently estimated
from the observed data, and, thus, are considered known in the identification analysis. The

identified set for 7 is defined by
L(Py) ={n=y90,F), V(0,F)st. P0,F) =R}

Following Norets and Tang (2013) and Kline and Tamer (2016), we can define a posterior
distribution on the space of identified sets [,(P) using the marginal posterior distribution
on the CCPs P. Then, a 1 — a-credible set for I,,(P) can be defined from a 1 — a-credible
set for CCPs, B | by

l1—a»

(16) B, = |J L(P).

peBF

When B _ is a 1 — a highest posterior density set and the Bernstein - von Mises theorem
holds for the point identified CCPs P, Bf , asymptotically has a 1 — a frequentist coverage
probability for P(6y, Fp) and, thus, Bll’ia has at least a 1 — « frequentist coverage probability
for the identified set I, (Fp) and 7.

The sets in (16) might be conservative; nevertheless, it would be prudent to report them in
applications as in the limit they do not depend on the shape of the prior and possess both

frequentist and Bayesian properties.

I
l—«

posterior draws {§) FO PO = pe®) FO) | =1,.