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a b s t r a c t

This paper studies large sample properties of a semiparametric Bayesian approach to inference in a linear
regression model. The approach is to model the distribution of the regression error term by a normal
distribution with the variance that is a flexible function of covariates. The main result of the paper is a
semiparametric Bernstein–von Mises theorem under misspecification: even when the distribution of the
regression error term is not normal, the posterior distribution of the properly recentered and rescaled
regression coefficients converges to a normal distribution with the zero mean and the variance equal to
the semiparametric efficiency bound.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

A linear model Yi = X ′

iβ0 + ϵi with the conditional moment
restriction E(ϵi|Xi) = 0 is a standard regression model, which is
widely used in statistics and econometrics. This paper analyzes
asymptotic properties of a Bayesian semiparametric approach to
estimation of this model. The approach is to model the distribu-
tion of the error term by a normal distribution with the variance
that is a flexible function of covariates. For example, Gaussian pro-
cess priors, splines, or polynomials can be used to build a prior
for the variance. Normality of the error term guarantees that the
Kullback–Leibler (KL) distance between the model and the data
generating process (DGP), which does not necessarily satisfy the
normality assumption, is minimized at the data generating values
of the linear coefficients and the conditional variance of the error
term. Thus, one can expect that the posterior asymptotically con-
centrates around the true values for these two parameters. The
normality assumption can also be justified by appealing to the
principle ofmaximum entropy of Jaynes (1957)when only the first
two conditional moments are of interest.

Themain result of the paper is a semiparametric Bernstein–von
Mises theoremundermisspecification: evenwhen the distribution
of the regression error term is not normal in the DGP, the posterior
distribution of the properly recentered and rescaled regression co-
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efficients converges to a normal distribution with the zero mean
and the variance equal to the semiparametric efficiency bound. The
equality of the variance to the semiparametric efficiency bound
suggests that the Bayesian inference about the linear coefficients
based on thismodel is conservative in the following sense: the pos-
terior variance in a correctly specified parametric model is likely
to be smaller than the posterior variance in a model that postu-
lates normally distributed errors with the flexibly modeled vari-
ance. With carefully specified priors, Bayesian procedures usually
behave well in small samples. Thus, the Bayesian normal linear
regression with nonparametric heteroskedasticity can also be an
attractive alternative to classical semiparametrically efficient esti-
mators from Carroll (1982) and Robinson (1987). At the same time,
the results of the paper provide a Bayesian interpretation to these
classical estimators.

Several different approaches to inference in a regression model
have been proposed in the Bayesian framework. In a standard text-
book linear regression model, normality of the error terms is as-
sumed. More recent literature relaxed the normality assumption
by using mixtures of normal or Student t distributions. However,
if the shape of the error distribution depends on covariates then
the posterior may not concentrate around the data generating val-
ues of the linear coefficients (Müller, 2013). Lancaster (2003) and
Poirier (2011) do not assume linearity of the regression function
and treat the linear projection coefficients as the parameters of in-
terest. They use Bayesian bootstrap (Rubin, 1981) to justify from
the Bayesian perspective the use of the ordinary least squares es-
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timator with a heteroskedasticity robust covariance matrix. Pele-
nis (2014) demonstrates posterior consistency in a semiparamet-
ric model with a parametric specification for the regression func-
tion and a nonparametric specification for the conditional distri-
bution of the regression error term. It is also possible to estimate
a fully nonparametric model for the distribution of the response
conditional on covariates, see, for example, Peng et al. (1996),
Wood et al. (2002), Geweke and Keane (2007), Villani et al. (2009),
and Norets (2010) for Bayesian models based on smoothly mix-
ing regressions or mixtures of experts and MacEachern (1999),
DeIorio et al. (2004), Griffin and Steel (2006), Dunson and Park
(2008), Chung and Dunson (2009), Norets and Pelenis (2014), and
Pati et al. (2013) for models based on dependent Dirichlet pro-
cesses. These fully nonparametric models require a lot of data
for reliable estimation results and prior specification is nontrivial.
The model considered in the present paper is more parsimonious.
Nevertheless, it delivers consistent estimation of the first two con-
ditional moments, conservative inference about the regression co-
efficients, and it is robust tomisspecification of the regression error
distribution. Thus, it can be thought of as a useful intermediate step
between fully nonparametric and oversimplistic models.

Bayesian Markov chain Monte Carlo (MCMC) estimation algo-
rithms for the normal regression with flexibly modeled variance
have been developed in the literature; see, for example, Yau and
Kohn (2003) and Chib and Greenberg (2013), who use transformed
splines, or Goldberg et al. (1998), who use transformed Gaussian
process prior for modeling the variance. In those papers, the mod-
els with flexibly modeled variances were shown to perform well
in simulation studies. Thus, the present paper considers only the
theoretical properties of the model.

The rest of the paper is organized as follows. Section 2 describes
the DGP. The model is described in Section 3. The Bernstein–von
Mises theorem is presented in Section 4. The assumptions of the
theorem are verified in Section 5 for priors based on truncated
Gaussian processes and multivariate Bernstein polynomials. Sec-
tion 6 concludes. Proofs are delegated to Section 7.

2. Data generating process

The data are assumed to include n observations on a response
variable and covariates (Yn,Xn) = (Y1, . . . , Yn, X1, . . . , Xn), where
Yi ∈ Y ⊂ R and Xi ∈ X ⊂ Rd, i ∈ {1, . . . , n}. X is
assumed to be convex and bounded set with a nonempty interior.
The observations are independently identically distributed (iid),
(Yi, Xi) ∼ F0. The joint DGP distribution F0 is assumed to have a
conditional density f0(Yi|Xi) with respect to (w.r.t.) the Lebesgue
measure. The distribution of the infinite sequence of observations,
(Y∞,X∞), is denoted by F∞

0 . Hereafter, the expectations E(·) and
E(·|·) are taken w.r.t. the DGP F∞

0 .
Let us make the following assumptions about the data gen-

erating process. First, E(Yi|Xi) = X ′

iβ0. Thus, for ϵi = Yi −

X ′

iβ0, E(ϵi|Xi) = 0. Second, E(XiX ′

i ) is invertible. Third, σ 2
0 (x) =

E(ϵ2
i |Xi = x) is well defined for any x ∈ X, and for some 0 < σ <

σ < ∞,

σ0(x) ∈ (σ , σ ), ∀ x ∈ X. (1)

3. Model, prior, and pseudo true parameter values

In the model, it is assumed that the regression error term
is normally distributed conditional on covariates, ϵi|Xi, β, σ ∼

N(0, σ 2(Xi)). Note that this normality assumption is not made for
the DGP and the model can be misspecified.

Let S ⊂ {σ : X → [σ , σ ]} be a complete separable metric
space and A be a Borel σ -field on Rd

× S. Let Π denote a prior
distribution for (β, σ ) on (Rd

× S, A). Π is a product of a normal
N(β,H−1) prior for β truncated to [−B, B]d, where a lower bound
on a finite constant B is specified below, and a prior distribution for
σ on S. It is also assumed that σ0 ∈ S.

The prior on S will be assumed to put a sufficiently large
probability on the following class of smooth functions

SM,α =


σ : X → [σ , σ ] : max

k1+···+kd≤α
sup
x∈X

|∂kσ(x)|

+ max
k1+···+kd=α

sup
x≠z∈X

|∂kσ(x) − ∂kσ(z)|
∥x − z∥α−α

≤ M


,

where k = (k1, . . . , kd) is a multi-index, ∂k
= ∂k/∂k1x1 · · · ∂kdxd is

a partial derivative operator, and α is the greatest integer strictly
smaller than α > 0.

The distribution of covariates is assumed to be ancillary and it
is not modeled. The likelihood function is given by

p(Yn
|Xn, β, σ ) =

n
i=1

pβ,σ (Yi|Xi),

pβ,σ (Yi|Xi) =

n
i=1

1
√
2πσ(Xi)

exp


−
(Yi − X ′

i β)2

2σ 2(Xi)


.

For A ∈ A, the posterior is given by

Π(A|Yn,Xn) =


A p(Y

n
|Xn, β, σ )dΠ(β, σ )

Rd×S p(Yn|Xn, β, σ )dΠ(β, σ )
.

In misspecified models, parameter values minimizing the KL
distance between the model and the DGP are called pseudo true
parameter values. It is well known that in models with finite di-
mensional parameters the maximum likelihood and Bayesian esti-
mators are consistent for the pseudo true parameter values under
weak regularity conditions (see Huber (1967), White (1982), and
Gourieroux et al. (1984) for classical results and Geweke (2005)
and Kleijn and van der Vaart (2012) for Bayesian results). Analo-
gous results for misspecified infinite dimensional models are ob-
tained in Kleijn and van der Vaart (2006).1 Thus, the following
lemma suggests that in the regression model described above the
posterior concentrates around (β0, σ0) in large samples.

Lemma 1. Consider the DGP and the model described above. Suppose
E(| log f0(Yi|Xi)|) < ∞. Then,

(β0, σ0) ∈ argmin
β∈Rd,σ :X→[σ ,σ ]

E

log

f0(Yi|Xi)

pβ,σ (Yi|Xi)


.

If E(XiX ′

i ) is positive definite, then the minimizer is F0 almost surely
unique.

The lemma is proved in Section 7.

4. Semiparametric Bernstein–von Mises theorem

The standard Bernstein–von Mises theorem shows that in well
behaved parametric models the posterior distribution centered at
an efficient estimator and scaled by

√
n converges to a normal

distribution with the zero mean and the variance equal to the
inverse of the Fisher information, see van der Vaart (1998) for
a textbook treatment under weak regularity conditions. Thus,

1 There is a considerable body of research on posterior consistency in correctly
specified nonparametric models. A general weak posterior consistency theorem for
density estimation was established by Schwartz (1965). Barron (1988), Barron et al.
(1999), and Ghosal et al. (1999) developed theory of strong posterior consistency.
An alternative approach to consistency was introduced byWalker (2004). Posterior
convergence rates were studied in Ghosal et al. (2000) and Shen and Wasserman
(2001). Belitser and Ghosal (2003), Ghosal et al. (2003), Huang (2004), Scricciolo
(2006), Ghosal et al. (2008), van der Vaart and van Zanten (2009), Kruijer et al.
(2010), and Gine and Nickl (2011) among others analyzed adaptation of posterior
convergence rates.
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the theorem implies asymptotic equivalence between standard
confidence and credible sets. Chernozhukov and Hong (2003) and
Kleijn and van der Vaart (2012) prove Bernstein–von Mises type
theorems for misspecified parametric models,2 and Panov and
Spokoiny (2013) consider settings with increasing dimension of
the nuisance parameter. Shen (2002) gave a set of conditions for
asymptotic normality of the posterior of a finite dimensional part
of the parameter in semiparametric models. The conditions are
general but difficult to verify. Deriving easier to verify sufficient
conditions for the non- and semiparametric Bernstein–von Mises
theorem is an active area of current research, see, for example,
Bickel and Kleijn (2012), Castillo (2012), Rivoirard and Rousseau
(2012), Kleijn and Knapik (2012), Kato (2013), Castillo and Nickl
(2013), Castillo and Rousseau (2013), and Castillo and Nickl
(2014). Misspecified semiparametric models are not covered by
the existing results.

Frequentist estimation of a semiparametric regression outlined
in Section 2 was considered in Chamberlain (1987). He shows
that the semiparametric efficiency bound for estimation of β0 is
given by


E(XiX ′

iσ0(Xi)
−2)
−1. This is the asymptotic variance of the

generalized least squares estimator under known σ0,

β̂GLS =


n

i=1

XiX ′

i

σ0(Xi)2

−1 n
i=1

XiYi

σ0(Xi)2
.

It follows from Carroll (1982) and Robinson (1987) that if σ0 is
estimated by kernel smoothing or nearest neighbor methods and
plugged in the formula for β̂GLS the resulting estimator attains the
efficiency bound. The following Bernstein–von Mises theorem is a
Bayesian analog of these results.

Theorem 1. For the DGP from Section 2 and the prior from Section 3,
let us make the following additional assumptions.
1. E[ϵ4

i ] < ∞.
2. There exist α > d/2 and positive sequences δn and Mn satisfying

δ4
nn → ∞ and (Mn/δ

2
n)

d/α/(δ4
nn) → 0,

√
nE

|Xijϵi|1{|Xijϵi| > C

√
nδ(1+d/(2α))

n M−d/(2α)
n }


→ 0,

∀ C ∈ (0, ∞), j = 1, . . . , d,
δ(1−d/(2α))
n Md/(2α)

n → 0.
3. For any constant A > 0, Π(σ : σ ∈ ScMn,α

) exp{An} → 0 as
n → ∞.

4. The truncation bound in the prior for β satisfies B > (σ 2/σ 2)
∥E|XiYi|∥2/emin(E(XiX ′

i )), where emin(E(XiX ′

i )) is the smallest
eigenvalue of E(XiX ′

i ).
5. For any C > 0 there exists r ∈ (0, 1) such that for all sufficiently

large n,

Π


σ , β : E


log

pβ0,σ0(Yi|Xi)

pβ,σ (Yi|Xi)


≤ Cδ2

n


≥ exp{−nrCδ2

n}.

Then, the total variation distance

dTV

Π[

√
n(β − β̂GLS)|Yn,Xn

],N

0,

E[XiX ′

iσ0(Xi)
−2

]
−1


(2)

converge to 0 in F∞

0 probability. This result also holds if β̂GLS in (2) is
replaced by the posterior mean


βdΠ(β|Yn,Xn).

The theorem is proved in Section 7. The proof exploits the fact
that the conditional posterior for

√
n(β − β̂GLS) given σ is a

truncated normal distribution, which is close to N

0,

E[XiX ′

iσ0

(Xi)
−2

]
−1

when σ is close to σ0. Arguments based on maximal

2 In parametric misspecified models, asymptotic normality of posterior does not
in general imply asymptotic equivalence of standard confidence and credible sets
due to the failure of the information equality.
inequalities for classes of functions that change with n from Pol-
lard (1984) and van der Vaart (1998) are used to make this claim
precise and to show that the posterior of σ concentrates on σ0 suf-
ficiently fast.

The assumption of the bounded parameter space (σ < σ0 < σ
and B < ∞) is admittedly restrictive. However, it appears to be
difficult to relax under misspecification. Similar assumptions are
also made in the previous related literature: Kleijn and van der
Vaart (2006) assumed a fixed variance and a bounded range for the
conditional mean in their misspecified regression example; Carroll
(1982) and Andrews (1994) assume a strictly positive lower bound
for the conditional variance function. Bickel and Kleijn (2012) do
not assume bounded space for regression coefficients in their anal-
ysis of homoskedastic partially linear regression, which suggest
that it could be possible to use their approach to relax this assump-
tion under a correctly specified model.

The assumptions of Theorem 1 on the prior are easy to verify in
applications. Assumption 5 of prior concentration on KL neighbor-
hoods is standard in the literature. Verification of Assumption 2 can
be simplified when the distribution of ϵi has subexponential tails:
when f0(x′β0 ± ϵ|x) ≤ e−Dϵ for some D > 0, all x ∈ X, and all
sufficiently large ϵ, the assumption holds for

Mn = nγ1 , δn = n−γ2 ,

γ2 <
1

6 + d/α
, γ1 < [2α/d − 1]γ2.

(3)

Assumption 3 is easy to verify for priors that provide explicit dis-
tributions for derivatives. The following section verifies the as-
sumptions of the theorem for priors based on truncated Gaussian
processes and multivariate Bernstein polynomials.

5. Examples of priors

5.1. Truncated Gaussian process

Priors based on Gaussian processes are extensively used in
Bayesian nonparametrics; see, for example, Tokdar and Ghosh
(2007), Tokdar (2007), van der Vaart and van Zanten (2008), Liang
et al. (2009), and Tokdar et al. (2010). In this section, I consider
a prior for σ based on integrated Brownian motion. Relevant
technical background can be found in Section 4 of van der Vaart
and van Zanten (2008).

Let X = [0, 1], W (x) be a Brownian motion on X with con-
tinuous sample paths, (I1W )(x) =

 x
0 W (t)dt , and (I jW )(x) = x

0 (I j−1W )(t)dt for j ≥ 2. Suppose σ0 ∈ SM,α0 for some (M, α0)
and σ < σ0 < σ . For a positive integer J , let us model σ(x) by
(I JW )(x) +

J
j=0 Zjx

j/j! truncated to [σ , σ ], where Zj’s are i.i.d.
N (0, 1) independent ofW . More formally, let W denote the prob-
abilitymeasure forW and Zj’s, which is defined on C([0, 1]) and its
Borel σ -field. Define an event,

T =


(I JW )(x) +

J
j=0

Zjxj/j! ∈ [σ , σ ], ∀x ∈ [0, 1]


and for a measurable set E,

Π(σ ∈ E) = W


(IkW )(x) +

J
j=0

Zjxj/j! ∈ E


T


W(T ).

Proposition 1. Assume that the tails of ϵi are subexponential. Then,
for any J ≥ 3 and α0 ∈ ((J + 1)/(2J − 1), J + 1/2], Assump-
tions 2, 3 and 5 of Theorem 1 hold.

5.2. Multivariate Bernstein polynomials

Priors based on Bernstein polynomials and related mixtures of
beta models were considered in Petrone (1999), Ghosal (2001),
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Petrone and Wasserman (2002), Kruijer and van der Vaart (2008),
Rousseau (2010), and Burda and Prokhorov (2013) among others.
Bernstein polynomials play a prominent role in function approxi-
mation literature especially when it comes to shape preserving ap-
proximation, see amonograph by Lorentz (1986). As shown below,
multivariate Bernstein polynomials are also convenient for setting
uppriors that respect bounds on partial derivatives and thus satisfy
sufficient conditions in Theorem 1.

In this subsection, X = [0, 1]d. For functions f : [0, 1]d → R,
a Bernstein polynomial operator of order mi w.r.t. coordinate i is
defined as follows,

(Bmi
i f )(x) =

mi
ji=0

f


ji
mi

, x−i

mi

ji


xjii (1 − xi)mi−ji ,

where x = (xi, x−i), xi ∈ [0, 1], and x−i ∈ [0, 1]d−1. Also let ∂
λi
i

stand for a partial derivative of order λi w.r.t. to coordinate i and
Dmi
i stand for a first difference operator3 w.r.t. coordinate i

Dmi
i f (x) =

f ((1 − 1/mi)xi + 1/mi, x−i) − f ((1 − 1/mi)xi, x−i)

1/mi
.

For a givenmi, define λith difference by Dmi,λi
i = Dmi−λi+1

i Dmi−λi+2
i

· · ·Dmi
i . Formulti-indicesm = (m1, . . . ,mk) andλ = (λ1, . . . , λk),

m ≥ λ, denote a multivariate Bernstein polynomial operator of
order m by Bm

= Bm1
1 · · · Bmk

k , a multivariate difference operator
by Dm,λ

= Dm1,λ1
1 · · ·Dmk,λk

k , and a partial derivative of order λ by
∂λ

= ∂
λ1
1 · · · ∂

λk
k .

Part (v) of Lemma 11 shows that

∂1
i B

mi
i = Bmi−1

i Dmi
i . (4)

From a repeated application of (4) it follows that ∂
λi
i Bmi

i =

Bmi−λi
i Dmi,λi

i . Since for anymi, q, and i ≠ k, we have Bmi
i Dq

k = Dq
kB

mi
i ,

it follows that

∂λBm
= Bm−λDm,λ. (5)

For m ∈ Nd, let us define a collection of points (a grid on [0, 1]d)

Gm
= {xj ∈ [0, 1]d : xj = j/m = (j1/m1, . . . , jk/mk), o ≤ j ≤ m},

where the inequalities hold coordinate-wise and o is a vector of
zeros. Let us denote a multivariate Bernstein polynomial of order
m with parameter g = {gj, o ≤ j ≤ m} by

Bm(x; g) =


o≤j≤m

gj
d

i=1

mi

ji


xjii (1 − xi)mi−ji .

For any given parameter g and a function f : [0, 1]d → R such that
g = f (Gm),

Bm(x; g) = (Bmf )(x), ∀ x ∈ [0, 1]d,

and we can also define

Dm,λ(x; g) = (Dm,λf )(x), ∀ x ∈ Gm−λ. (6)

Let us consider a sample size dependent prior4 Πn that puts
probability 1 onm such thatm1 = · · · = md = nγ3 , where

γ3 =
4 + d/α

d[6 + d/α]
, α = ⌊d/2⌋ + 1, (7)

and the dependence of m on n is not reflected in the notation for
brevity.

3 This definition is from Majer (2012), who briefly outlines an argument for
why partial derivatives of multivariate Bernstein polynomials for f approximate
corresponding partial derivatives of f ; the details of the argument are worked out
here in Lemma 11.
4 The proof of Theorem 1 does not require any changes when the prior is indexed

by n.
Conditional on m, σ(x) = Bm(x; gm) and the prior for gm is
assumed to have a positive density w.r.t. the Lebesgue measure
on R(m1+1)d . This density is assumed to be bounded from below
by π

(m1+1)d
g for some π g > 0 on the restrictions defined in (8) and

equal to zero elsewhere.

gm
j ∈ [σ , σ ] for o ≤ j ≤ m;

|Dm,λ(x; gm)| ≤ Mn for
d

i=1

λi ≤ ⌊d/2⌋ + 1, x ∈ Gm−λ,
(8)

Mn = nγ1 , γ1 =
[2α/d − 1](1 − s)2

d[6 + d/α]
, (9)

and s is a constant in (0, 1).
Lemma 11 provides explicit formulas for Dm,λ(Gm−λ

; gm) that
are linear in gm. Thus, the model with the sample size dependent
prior can be implemented by truncating a positive density for
the Bernstein polynomial coefficients to a set of linear inequality
restrictions in (8) and using Markov chain Monte Carlo methods
for estimation.

Proposition 2. Assume that the tails of ϵi are subexponential and
σ0 has uniformly bounded partial derivatives up to order ⌊d/2⌋ + 2.
Then, for the prior specified above, Assumptions 2, 3 and 5 of Theo-
rem 1 hold.

5.3. Other possible priors

It should be possible to verify the assumptions of Theorem 1 for
other common nonparametric prior distributions. First, a wavelet
prior in the spirit of Gine and Nickl (2011) (p. 5 display (5)) is likely
to satisfy the assumptions as it imposes an explicit uniform bound
on the Hölder norm. Such a prior might be easier to implement
than the prior of Section 5.1 since it does not involve truncation
(the advantage of the prior of Section 5.1 is that it does not require
uniform bounds on derivatives). Second, the sufficient conditions
for the truncated Gaussian process in Proposition 1 show that
an increase in the smoothness of the process, J , only weakens
the sufficient conditions. Thus, truncated Gaussian processes with
analytical sample paths, such as a process with the squared-
exponential covariance kernel, are likely to satisfy the assumptions
as well. Finally, a verification of the assumptions for a prior based
on splines was present in an earlier version of the paper and is
omitted from the current version for brevity.

6. Conclusion

The paper proves asymptotic normality of the posterior of the
coefficients in possibly misspecified heteroskedastic linear regres-
sion model. The model is shown to be robust to misspecification
in the distribution of the regression error term. Thus, this model
should be a more prominent part of the Bayesian toolbox for re-
gression analysis.

7. Proofs

Proof. Lemma 1.
log

f0(y|x)
(2π)−0.5σ(x)−1 exp{−0.5(y − x′β)2/σ(x)2}

dF0(y, x)

=

 
log f0(y|x) + 0.5 log(2πσ(x)2) +

(y − x′β)2

2σ(x)2


dF0(y, x).

Since E[(Yi − X ′

iβ)2|Xi) = σ0(Xi)
2

+ [X ′

i (β − β0)]
2, β = β0 is a

minimizer of the KL distance for any σ : X → [σ , σ ]. It is a unique
minimizer if E(XiX ′

i ) > 0. For any fixed x, log σ 2(x) + σ 2
0 (x)/σ 2(x)

is uniquely minimized at σ(x) = σ0(x). �
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Proof. Theorem 1.
Conditional on σ , the posterior of β , Π(β|σ , Yn,Xn), is

N(β,H−1) truncated to [−B, B]d, where

H = H +


i

XiX ′

i

σ(Xi)2
and β = H−1


Hβ +


i

XiYi

σ(Xi)2


.

A derivation of the conditional posteriors in linear regressionmod-
els can be found, for example, in Geweke (2005). The (marginal)
posterior of β can be expressed as

Π(β|Yn,Xn) =


Π(β|σ , Yn,Xn)dΠ(σ |Yn,Xn).

The conditional posterior of the normalized coefficients z =
√
n(β − β̂GLS) is

Π(z|σ , Yn,Xn) ∝ φ

z,

√
n(β − β̂GLS), (H/n)−1


× 1√

n([−B,B]d−β̂GLS )
(z),

where φ(·, ·, ·) denotes the density of the normal distribution and
1.(·) is an indicator function.

The total variation distance of interest can be expressed as fol-
lows

dTV

Π[z|Yn,Xn

],N

0,

E[XiX ′

iσ0(Xi)
−2

]
−1


=

  Π(z|σ , Yn,Xn)dΠ(σ |Yn,Xn)

− φ

z, 0,


E[XiX ′

i σ0(Xi)
−2

]
−1
  dz

≤

  Π(z|σ , Yn,Xn)

− φ

z, 0,


E[XiX ′

iσ0(Xi)
−2

]
−1
 dzdΠ(σ |Yn,Xn). (10)

At this point in the proof, let us derive a boundon the total variation
distance between two normal distributions and introduce notation
for various matrix norms that will be used below. By Kemperman
(1969) (or Proposition 1.2.2 in Ghosh and Ramamoorthi (2003)),
the total variation distance is bounded by 2 times the square root
of the KL distance. The KL distance between two normal distribu-
tions N(µ1, Σ1) and N(µ2, Σ2) is equal to

1
2


log

|Σ2|

|Σ1|
+ tr(Σ−1

2 Σ1 − I) + (µ1 − µ2)
′Σ−1

2 (µ1 − µ2)


≤

|Σ−1
2 | − |Σ−1

1 |


min(|Σ−1
2 |, |Σ−1

1 |)
+ d · ∥Σ−1

2 − Σ−1
1 ∥∞ · ∥Σ1∥∞

+ ∥µ1 − µ2∥
2
2 · ∥Σ−1

2 ∥2, (11)

where |Σ | denotes the determinant of Σ , a matrix norm ∥Σ∥∞ =

maxij |[Σ]ij| is the largest element of Σ in the absolute value, and
∥Σ∥2 = supµ ∥Σµ∥2/∥µ∥2 is a matrix norm induced by the stan-
dard norm on Rd, ∥µ∥

2
2 =

d
i=1 µ2

i .
By Lemma 2 and inequality (11),

dTV

Π[

√
n(β − β̂GLS)|Yn,Xn

],N

0,

E[XiX ′

iσ0(Xi)
−2

]
−1


≤

 
2

An + Bn + Cn/Dn + (1 − Dn)/Dn + 1 − En


× dΠ(σ |Yn,Xn),

where

An =

|H/n| − |E[XiX ′

iσ0(Xi)
−2

]|


min(|H/n|, |E[XiX ′

iσ0(Xi)−2]|)
,

Bn = d · ∥H/n − E[XiX ′

i σ0(Xi)
−2

]∥∞ · ∥

E[XiX ′

iσ0(Xi)
−2

]
−1

∥∞,

Cn = ∥H/n∥2 ·



1
n


i

XiX ′

i

σ0(Xi)2

−1
1

√
n


i

XiYi

σ0(Xi)2
,

− (H/n)−1


Hβ
√
n

+
1

√
n


i

XiYi

σ(Xi)2


2

2

,

Dn =


√
n([−B,B]d−β̂GLS )

φ

z,

√
n(β − β̂GLS), (H/n)−1


dz,

En =


√
n([−B,B]d−β̂GLS )

φ

z, 0,


E[XiX ′

iσ0(Xi)
−2

]
−1

dz.

It is shown in Lemma 3 that En and Dn have lower bounds that do
not depend on σ and converge to 1 in F∞

0 probability. By Lem-
mas 4–6, which bound (An, Bn, Cn), and

√
a + b ≤

√
a +

√
b

for any nonnegative a and b, to prove the theorem it suffices
to show that


∥


i Xiϵi(σ0(Xi)
−2

− σ(Xi)
−2)/

√
n∥2dΠ(σ |Yn,Xn)

and

d2(σ−2

0 , σ−2)dΠ(σ |Yn,Xn) converge to zero in F∞

0 proba-
bility, where d2(σ−2, σ−2

0 ) = (

[σ−2(x) − σ−2

0 (x)]2dF0(x))0.5. 
i

Xiϵi(σ0(Xi)
−2

− σ(Xi)
−2)/

√
n


2

dΠ(σ |Yn,Xn)

≤ sup
σ∈S


i

Xiϵi(σ
−2
0 (Xi) − σ−2(Xi))/

√
n


2

·

Π(d2(σ−2

0 , σ−2) > δn ∩ SMn,α|Yn,Xn)

+ Π(ScMn,α
|Yn,Xn)


+ sup

{σ∈SMn,α : d2(σ
−2
0 ,σ−2)≤δn}


i

Xiϵi

× (σ−2
0 (Xi) − σ−2(Xi))/

√
n


2

. (12)

The right hand side of the above display converges to zero in F∞

0
outer probability5 if
√
n · Π(d2(σ−2

0 , σ−2) > δn ∩ SMn,α|Yn,Xn) → 0

in F∞

0 probability, (13)
√
n · Π(ScMn,α

|Yn,Xn) → 0 in F∞

0 probability, (14)

sup
{σ∈SMn,α : d2(σ

−2
0 ,σ−2)2≤δ2n }


i

Xijϵi(σ
−2
0 (Xi) − σ−2(Xi))/

√
n

 → 0

in F∞

0 outer probability. (15)

Lemmas 7–9 show that conditions (13)–(15) hold under the as-
sumptions of the theorem. Finally, let us consider


d2(σ−2

0 , σ−2)

dΠ(σ |Yn,Xn). Since d2(σ−2
0 , σ−2) ≤ σ−2,

F∞

0


d2(σ−2

0 , σ−2)dΠ(σ |Yn,Xn) > ϵ


≤ F∞

0


σ−2Π(d2(σ−2

0 , σ−2) > ϵ/2|Yn,Xn) + ϵ/2 > ϵ


= F∞

0


Π(d2(σ−2

0 , σ−2) > ϵ/2|Yn,Xn) > ϵ/(2σ−2)

, (16)

5 For standard notions and definitions used in empirical processes theory, such
as outer probability and metric and bracketing entropy, see, for example, van der
Vaart and Wellner (1996).
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which converges to zero by conditions (13) and (14). This com-
pletes the proof of the theorem when β̂GLS is used for centering.

To see that the theorem also holds when the posterior mean is
used for centering, note that

βdΠ(β|Yn,Xn) =


βdΠ(σ |Yn,Xn),

√
n∥β̂GLS −


βdΠ(σ |Yn,Xn)∥2

≤


√
n∥β̂GLS − β∥2dΠ(σ |Yn,Xn)

and that
√
n∥β̂GLS − β∥2 is bounded in Lemma 6. Thus, under the

posterior mean centering, the term analogous to Cn above is han-
dled by adding and subtracting β̂GLS to/from the posterior mean,
and applying the triangle inequality and the proof of Lemma 6. The
use of the posterior mean instead of β̂GLS in Dn and En does not re-
quire any changes in the proof of Lemma 3. The rest of the proof is
not affected by the centering. �

Lemma 2. For two distributions P1 and P2 with densities p1 and p2
w.r.t. a measure µ, the total variation distance between P2 truncated
to a set E and P1 can be bounded as follows p1 −

1Ep2
P2(E)

 dµ ≤ P1(Ec) +
P2(Ec)

P2(E)
+


|p1 − p2|dµ

P2(E)
.

Proof.
|p1 − 1Ep2/P2(E)| =


E
|p1P2(E) − p2|/P2(E) + P1(Ec)

≤


E
|p1(P2(E) − 1) + p1 − p2|/P2(E) + P1(Ec)

≤ P1(Ec) + (1 − P2(E))/P2(E) +


|p1 − p2|/P2(E). �

Lemma 3. Under the assumptions of Theorem 1, En and Dn defined
in its proof have lower bounds that do not depend on σ and converge
to 1 in F∞

0 probability.

Proof.

1 −


√
n([−B,B]d−β̂GLS )

φz, (
√
n(β − β̂GLS), (H/n)−1)dz

= 1 −


√
n([−B,B]d−β)

φ(z, 0, (H/n)−1)dz

≤

d
i=1


zi∉

√
n([−B,B]−β i)

φ(z, 0, (H/n)−1)dz.

Next, note that

z ′(H/n)z ≥ z ′


H +


i

XiX ′

i /σ
2


n


z ≥ z ′zenm, (17)

where enm is the smallest eigenvalue of (H +


i XiX ′

i /σ
2)/n. As in

the proof of Lemma 5,

|H/n| ≤



H +


i

XiX ′

i /σ
2


n

 . (18)

Using the bound on ∥(H/n)−1
∥2 from Lemma 6, we get

|β i| ≤ ∥β∥2 ≤ ∥(H/n)−1
∥2 ·



Hβ +


i

|XiYi|/σ
2


n


2

≤

σ 2

Hβ +

i

|XiYi|/σ
2


n

2

emin


Hσ +


i
XiX ′

i


n


= Fn
F∞
0
→ F =

σ 2
∥E|XiYi|/σ

2
∥2

emin(E(XiX ′

i ))
. (19)

Note that by Assumption 4 of Theorem 1, B > F . From (17)–(19),
zi∉

√
n([−B,B]−β i)

φ(z, 0, (H/n)−1)dz

≤ 2

zi≥

√
n(B−|β i|)

φ(z, 0, (H/n)−1)dz

≤ 2



H +


i

XiX ′

i /σ
2


n


0.5

×


zi≥

√
n(B−Fn)

exp{−0.5z ′zenm}(2π)−d/2dz

≤ 2



H +


i

XiX ′

i /σ
2


n


0.5

(enm)−d/2

×


zi≥

√
n(B−Fn)enm

exp{−0.5z2i }(2π)−1/2dz.

For z ≥ 1, the normal CDF can be bounded as follows, 1 − Φ(z) ≤

exp(−z2). Thus, the integral in the last display is bounded by

exp{−n(B − Fn)2(enm)2} + 1{
√
n(B − Fn)enm < 1}

F∞
0
→ 0,

where the convergence in probability follows from the conver-
gence of Fn and enm. This completes the proof for Dn. The proof of
the analogous result for En is similar. �

Lemma 4. Expression Bn from the proof of Theorem 1 can be bounded

above by B1
n + B2

nd2(σ
−2, σ−2

0 ), where B1
n

F∞
0
→ 0 and B2

n

F∞
0
→ B2, B2 is a

constant, and (B1
n, B

2
n) do not depend on σ .

Proof.

∥H/n − E[XiX ′

iσ0(Xi)
−2

]∥∞ ≤ ∥H/n∥∞

+ sup
σ∈S

1n i

XiX ′

i

σ 2(Xi)
− E


XiX ′

i

σ 2(Xi)


∞

+

E XiX ′

i


1

σ 2(Xi)
−

1
σ 2
0 (Xi)


∞

.

The first term on the right hand side converges to zero. The
second term converges to zero in outer probability by the as-
sumed F0-Glivenko–Cantelli class for XiX ′

i σ
−2(Xi), σ ∈ S. By the

Cauchy–Schwarz inequality and the finiteness of the fourth mo-
ments of Xi, the last term is bounded by a constant multiple of
d2(σ−2, σ−2

0 ). �

Lemma 5. Expression An from the proof of Theorem 1 is bounded

above by A1
n + A2

nd2(σ
−2, σ−2

0 ), where A1
n

F∞
0
→ 0 and A2

n

F∞
0
→ A2, A2

is a constant, and (A1
n, A

2
n) do not depend on σ .

Proof. It follows by the definition of the determinant and
induction that for two d × d matrices A and B,

|A| − |B|
 ≤

d! · dmax(∥A∥∞, ∥B∥∞)d−1
· ∥A − B∥∞. Thus, the numerator of An

is bounded by a multiple of the bound on Bn derived in Lemma 4
times max(∥H/n∥∞, ∥E[XiX ′

i σ0(Xi)
−2

]∥∞)d−1. Since ∥H/n∥∞ ≤

∥H/n∥∞ + ∥


i XiX ′

i /n∥∞/σ 2, the numerator of An is bounded
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above as desired. To bound the denominator of An below note
that for symmetric positive semidefinite matrices A and B, A ≥ B
implies |A| ≥ |B| (see, for example, Lemma 1.4 in Zi-Zong (2009)).

Thus, |H/n| ≥ |


i XiX ′

i /n|/σ
2k. Since |


i XiX ′

i /n|
F∞
0
→ |E[XiX ′

i ]| >
0, the claim of the lemma follows. �

Lemma 6. The following inequality holds for Cn defined in the proof
of Theorem 1
Cn ≤ C1

n + C2
n

 1
√
n


i

Xiϵi


1

σ0(Xi)2
−

1
σ(Xi)2


2

+ C3
nd2(σ

−2
0 , σ−2),

where (C1
n , C2

n , C3
n ) do not depend on σ , C1

n

F∞
0
→ 0, C2

n converges in
F∞

0 probability to a constant, and C3
n converges weakly to a random

variable.

Proof. Plugging Yi = X ′

i β0 + ϵi into the definition of Cn results in


Cn/∥H/n∥2 =

 (H/n)−1 H(β0 − β)/
√
n

+


1
n


i

XiX ′

i

σ0(Xi)2

−1
1

√
n


i

Xiϵi

σ0(Xi)2

− (H/n)−1 1
√
n


i

Xiϵi

σ(Xi)2


2

. (20)

The first expression on the right hand side of (20) converges to zero
in probability because ∥(H/n)−1

∥2 is bounded above by a sequence
converging in probability as it is shown below (see (23)). The norm
of the second expression can be bounded by6

∥ (H/n)−1
∥2 ·

 1
√
n


i

Xiϵi


1

σ0(Xi)2
−

1
σ(Xi)2


2

+



1
n


i

XiX ′

i

σ0(Xi)2

−1

− (H/n)−1


2

·

 1
√
n


i

Xiϵi

σ0(Xi)2


2

. (21)

The norm of the difference in the inverses in the second line of (21)
is bounded by7

1
n


i

XiX ′

i

σ0(Xi)2

−1

2

· ∥ (H/n)−1
∥2

·




i

XiX ′

i (σ0(Xi)
−2

− σ(Xi)
−2) − H


n


2

. (22)

Next, we separately consider the three parts of the product in (22).
The first part converges to ∥


E(XiX ′

i σ0(Xi)
−2)
−1

∥2 in probability.
The second part,

∥(H/n)−1
∥2 = sup

x

∥(H/n)−1x∥2

∥x∥2
= sup

y

∥(H/n)−1(H/n)y∥2

∥(H/n)y∥2

6
∥A−1a− B−1b∥ ≤ ∥A−1(a− b)∥ + ∥(A−1

− B−1)b∥ ≤ ∥A−1
∥ ∥a− b∥ + ∥A−1

−

B−1
∥ ∥b∥.

7
∥A−1

− B−1
∥ = ∥A−1(A − B)B−1

∥ ≤ ∥A−1
∥ ∥A − B∥ ∥B−1

∥.
=


inf
y

∥(H/n)y∥2

∥y∥2

−1

=


inf
y

∥y∥2 · ∥(H/n)y∥2

∥y∥2
2

−1

≤


inf
y

|y′(H/n)y|
∥y∥2

2

−1

≤

inf
y

|y′


Hσ 2

+

i
XiX ′

i


n

y|/σ 2

∥y∥2
2


−1

=
σ 2

emin


Hσ 2

+

i
XiX ′

i


/n
 F∞

0
→

σ 2

emin(E(XiX ′

i ))
, (23)

where emin(·) stands for the smallest eigenvalue. In the preceding
display, the first inequality on the third line follows by the
Cauchy–Schwarz inequality, the second inequality follows by the
positive semidefiniteness of XiX ′

i , and the last equality follows from
the eigenvalue decomposition for symmetric matrices.8

The third part of the product in (22) is bounded above byHn
+

1n i

XiX ′

i

σ 2
0 (Xi)

− E


XiX ′

i

σ 2
0 (Xi)


2

+ sup
σ∈S

E


XiX ′

i

σ 2(Xi)



−
1
n


i

XiX ′

i

σ 2(Xi)


2

+

E XiX ′

i


1

σ 2(Xi)
−

1
σ 2
0 (Xi)


2

,

which can be bounded as in Lemma 4 (∥A∥2 ≤ dim(A)∥A∥∞). The
bounds derived above and the Slutsky theorem imply the claim of
the lemma. �

Lemma 7. Under the assumptions of Theorem 1, (14) holds.

Proof. Note that
√
nΠ(ScMn,α

|Yn,Xn) is bounded above by

√
nΠ(ScMn,α

) exp


n


sup

β∈[−B,B]d,σ∈S

1
n


i

log pβ,σ (Yi|Xi)

− inf
β∈[−B,B]d,σ∈S

1
n


i

log pβ,σ (Yi|Xi)


.

Since log pβ,σ (Yi|Xi) = − log(
√
2πσ(Xi)) − (Y 2

i − 2β ′XiYi +

β ′XiX ′

i β)/(2σ 2(Xi)), β ∈ [−B, B]d, and 0 < σ ≤ σ ≤ σ <
∞, the expression in the square brackets is bounded above by
a sufficiently large constant a.s. F∞

0 by the strong law of large
numbers. This constant can be increased to some A > 0 so that√
nΠ(ScMn,α

|Yn,Xn) ≤ Π(ScMn,α
) exp{An} for all sufficiently large n

a.s. F∞

0 . Together with Assumption 3 in Theorem 1, this implies the
claim of the lemma. �

Lemma 8. Under the assumptions of Theorem 1, (13) holds.

Proof. Let Zn = supβ∈[−B,B]d,σ∈SMn,α

 1n i log
pβ0,σ0 (Yi|Xi)
pβ,σ (Yi|Xi)

−

E log
pβ0,σ0 (Yi|Xi)
pβ,σ (Yi|Xi)

. By Lemma 10, d2(σ−2
0 , σ−2)2C ≤ E log pβ0,σ0/

pβ,σ , where C is a constant in (0, ∞). Thus,

Π

SMn,α ∩ d2(σ−2

0 , σ−2)2 > δ2
n |Y

n,Xn
≤ Π


SMn,α ∩ E log

pβ0,σ0

pβ,σ

> Cδ2
n

Yn,Xn


8 A = QΛQ ′ , QQ ′
= I and Λ is a diagonal matrix with eigenvalues of A on the

diagonal.
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≤


SMn ,α∩E log(pβ0 ,σ0 /pβ,σ )>Cδ2n

exp{n[Cδ2
n/2 − E log(pβ0,σ0/pβ,σ ) + Zn]}dΠ

SMn ,α∩E log(pβ0 ,σ0 /pβ,σ )≤Cδ2n/2 exp{n[Cδ2
n/2 − E log(pβ0,σ0/pβ,σ ) − Zn]}dΠ

≤
exp{n[−Cδ2

n/2 + 2Zn]}
Π

SMn,α ∩ E log(pβ0,σ0/pβ,σ ) ≤ Cδ2

n/2


≤ exp{−n[(1 − r)Cδ2
n/2 − 2Zn]},

where the last inequality follows from Assumptions 3 and 5 of the
theorem. For ϵ > 0,

F∞

0


SMn,α ∩

√
nΠ(d2(σ−2

0 , σ−2)2 > δ2
n |Y

n,Xn) > ϵ


≤ F∞∗

0


Zn >

(1 − r)Cδ2
n

4
−

log[
√
n/ϵ]

2n


≤ F∞∗

0


Zn >

(1 − r)Cδ2
n

8


, (24)

where the last inequality holds for all sufficiently large n by δ4
nn →

∞ (Assumption 2 of the theorem). It remains to prove that the last
bound in (24) converges to zero. Since

log
pβ0,σ0(Yi|Xi)

pβ,σ (Yi|Xi)

=
1
2


log σ 2(Xi) − log σ 2

0 (Xi) −
ϵ2
i

σ 2
0 (Xi)

+
ϵ2
i

σ 2(Xi)

+ 2
ϵiX ′

i

σ 2(Xi)
(β0 − β) + (β − β0)

′


XiX ′

i

σ 2(Xi)


(β − β0)


(25)

and β, β0 ∈ [−B, B]d, it suffices to prove that

F∞∗

0


sup
f∈Fn

1n i

f (ϵi, Xi) − Ef (ϵi, Xi)

 ≥ C̃δ2
n


→ 0,

∀ C̃ > 0, (26)

for the following four classes Fn: {log σ(Xi), σ ∈ SMn,α},
{ϵ2

i /σ(Xi)
2, σ ∈ SMn,α}, {ϵiXik/σ(Xi)

2, σ ∈ SMn,α}, and
{XijXik/σ(Xi)

2, σ ∈ SMn,α}. Convergence at rate δ2
n for expressions

in (25) involving σ0 follows from the Chebyshev’s inequality, the
existence of second moments (Assumption 1), and δ4

nn → ∞.
It follows from inequalities (30) and (31) on p. 31 in Pollard

(1984) that (26) is bounded above by

4E∗ min

1, 2N1


C̃δ2

n

8
, Fn, L1(F0,n)



× exp

−
1
2
n


C̃δ2

n

8

2
1

max
j=1,...,N1


i
g2
j (ϵi, Xi)


 ,

where N1 = N1(·, Fn, L1(F0,n)) is the covering number w.r.t.
L1(F0,n) distance, F0,n is the empirical measure corresponding to F0,
and gj’s are the centers of the covering balls. Lemma 2.3.7 in van
der Vaart and Wellner (1996) on p. 112 gives a proof of Eq. (30) in
Pollard (1984) using outer probabilities and expectations to avoid
measurability problems.

As X is assumed to be bounded and convex, it follows from
lemma 2.7.1 in van der Vaart and Wellner (1996) that the metric
entropy in the sup norm of SM,α is bounded by

logN(ϵ, SM,α, ∥ · ∥∞) ≤ K(M/ϵ)d/α, (27)

where K > 0 is a constant that does not depend on (M, ϵ). For
Fn = {ϵ2

i /σ(Xi)
2, σ ∈ SMn,α},

1/n


i

|f1(ϵi, Xi) − f2(ϵi, Xi)| ≤ sup |σ−2
1 − σ−2

2 |


i

ϵ2
i /n.
Then, the bound on the uniform metric entropy for SMn,α in (27)
implies

N1

ϵ, Fn, L1(F0,n)


≤ exp{C1(QnMn/ϵ)

d/α
},

where C1 is a constant and Qn =


i ϵ
2
i /n converges a.s. to a

constant. Also note that

max
j=1,N1


i

g2
j (ϵi, Xi) ≤ σ−4Rn,

where Rn =


i ϵ
4
i /n converges a.s. to a constant. Thus, (26) is

bounded above by

4E min

1, 2 exp


C2Q d/α

n Md/α
n δ−2d/α

n − C3nδ4
n/Rn


,

where C2 and C3 are positive constants. Since the integrand is
uniformly bounded by 1, the limsup version of Fatou’s lemma
implies that the previous display converges to zero under
Assumption 2 of Theorem 1. Claim (26) for the other three classes
Fn follow by the same argument with modified Rn and Qn. �

Lemma 9. Under the assumptions of Theorem 1, (15) holds.

Proof. The proof is based on lemma 19.34 in van der Vaart (1998).
Define

F = {Xijϵi[σ
−2
0 (Xi) − σ−2(Xi)] : d2(σ−2

0 , σ−2)2 ≤ δ2
n, σ ∈ SMn,α}.

For any f ∈ F , Ef 2 ≤ C1δ
2
n = δ2, where C1 is a positive constant

and δ is defined by the last equality. For f1, f2 ∈ F , E(f1 − f2)2 ≤

C2 sup |σ1 − σ2|, where C2 is a positive constant. Thus, by (27), the
bracketing L2(F0) entropy logN[](δ, F , L2(F0)) ≤ C3[Mn/δ]

d/α and

a(δ) = δ/

logN[](δ, F , L2(F0)) ≥ C4δ

(1+d/(2α))
n M−d/(2α)

n .

A bound on the bracketing integral is proportional to δ1−d/(2α)

Md/(2α)
n and

J[](δ, F , L2(F0)) ≤ C5δ
(1−d/(2α))
n Md/(2α)

n .

By lemma 19.34 in van der Vaart (1998),

E∗ sup
f∈F


i

f (ϵi, Xi)/
√
n

 ≤ J[](δ, F , L2(F0))

+
√
nE(|Xijϵi|1{|Xijϵi| >

√
na(δ)}).

ByAssumption 2 of Theorem1, this display converges to zero. Thus,
the claim of the lemma is proved. �

Lemma 10. For some positive constants C and C̄

E(log(pβ0,σ0/pβ,σ )) ≥ C[∥β − β0∥
2
2 + E(σ 2

0 − σ 2)2] (28)

E(log(pβ0,σ0/pβ,σ )) ≤ C̄[∥β − β0∥
2
2 + E(σ 2

0 − σ 2)2]. (29)

Proof. The law of iterated expectations implies

E

log

pβ0,σ0

pβ,σ


=

1
2
E

log

σ 2(Xi)

σ 2
0 (Xi)

+
σ 2
0 (Xi) − σ 2(Xi)

σ 2(Xi)

+ (β − β0)
′


XiX ′

i

σ 2(Xi)


(β − β0)


.

First, for emin and emax denoting the smallest and largest eigenval-
ues, note that

emin(E(XiX ′

i ))

σ 2 ∥β − β0∥
2
2 ≤ (β − β0)

′E


XiX ′

i

σ 2(Xi)


(β − β0)

≤
emax(E(XiX ′

i ))

σ 2
∥β − β0∥

2
2.

Second, let σ 2
0 /σ 2

= z and q(z) = (z − 1 − log z)/(z − 1)2. Note
that q(z) is well defined, positive, and monotonically decreasing
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on (0, ∞). Thus, for any z ∈ [σ 2/σ 2, σ 2/σ 2
], q(σ 2/σ 2) ≤ q(z) ≤

q(σ 2/σ 2). From this inequality,

E(σ 2
0 − σ 2)2

σ 4 q(σ 2/σ 2) ≤ E

log

σ 2

σ 2
0

+
σ 2
0 − σ 2

σ 2


≤

E(σ 2
0 − σ 2)2

σ 4
q(σ 2/σ 2). (30)

Thus, inequalities (28) and (29) are proved. �

Proof. Proposition 1.
First, consider Assumption 5. By Lemma 10 and E(σ 2

0 − σ 2)2 ≤

[2σ sup |σ − σ0|]
2,

Π


E log

pβ0,σ0

pβ,σ

≤ Cδ2
n


≥ Π


∥β − β0∥

2
2 ≤

Cδ2
n

2C̄


× Π


sup |σ − σ0| ≤

C1/2δn

2σ(2C̄)1/2


. (31)

A lower bound on the first term on the right hand side is propor-
tional to δd

n , which is polynomial in n and, thus, can be ignored.
Since σ < σ0 < σ , for all sufficiently small εn

Π


sup
x

|σ(x) − σ0(x)| ≤ 2εn



=

W


sup
x

(I JW )(x) +

J
j=0

Zjxj/j! − σ0(x)

 ≤ 2εn


W(T )

.

Theorems 2.1 and 4.1 in van der Vaart and van Zanten (2008) im-
ply the following lower bound for prior concentration probability
around σ0,

Π


sup
x

|σ(x) − σ0(x)| ≤ 2εn


≥ W(T )−1 exp{−nε2

n}, εn ∝ n−α0/(2J+2)

when α0 ≤ J+1/2. Thus, Assumption 5 of Theorem 1 holds as long
as

n−α0/(2J+2)/δn → 0, α0 ≤ J + 1/2. (32)

Next, let us consider Assumption 3 of Theorem 1 with α = J .
(I JW )(x) +

J
j=0

Zjxj/j! ∈ ScMn,α


⊂


sup
x

|W (x)| ≥ Mn/4



∃j, |Zj| ≥ Mn/(2(J + 1))


.

Thus, Π(ScMn,α
) ≤ W(T )−1

·

W[supx |W (x)| ≥ Mn/4] + (J + 1)W

[|zj| ≥ Mn/(2(J + 1))]

. Note that W(supx |W (x)| ≥ Mn/4) ≤

4[1 − Φ(Mn/4)] by the standard results on barrier crossing prob-
abilities for W , see, for example, theorem 7.1 on p.314 in Shorack
(2000). Then, Assumption 3 of Theorem 1 holds if

Mn ≥ n(1+r1)/2, for some r1 > 0. (33)

Thus, to prove the proposition it suffices to find δn and Mn that
satisfy conditions (3), (32) and (33). These conditions are satisfied if

γ2 <
α0

2J + 2
, γ2 <

1
6 + J−1

, α0 ≤ J + 1/2, and

γ1 =
1 + r1

2
< (2J − 1)γ2.

Values of (γ1, γ2, r1) satisfying these inequalities can be chosen as
long as
1
2(2J − 1)

< min


1
6 + J−1

,
α0

2J + 2


,

which holds for any J ≥ 3 and α0 > (J + 1)/(2J − 1). �

Proof. (Proposition 2)
For α = ⌊d/2⌋ + 1, γ1 from (9), γ3 from (7), δn = n−γ2 , and

γ2 =
1−s

d[6+d/(⌊d/2⌋+1)] , it can be verified by a direct calculation that
inequalities in (3) hold. Thus, Assumption 2 of Theorem 1 holds.

Simple algebraic manipulations deliver the following conver-
gence results that are used below,

Mn

m⌊d/2⌋+1/2
1

→ 0, δnm
1/2
1 → ∞,

md
1 logm1

nδ2
n

→ 0 as n → ∞. (34)

By Part (iv) of Lemma 11, the assumed existence and uniform
boundedness of partial derivatives up to order ⌊d/2⌋ + 2 for σ0
implies that for some N ∈ N and a constantM > 0

|Dm,λσ0(x)| ≤ M (35)

for all x ∈ [0, 1]d, all mi ≥ N , i = 1, . . . , d and all λ with
|λ| =

d
j=1 λj ≤ ⌊d/2⌋ + 1. ConstantM can be chosen sufficiently

large so that it is also a Lipschitz constant forσ0: |σ0(x1)−σ0(x2)| ≤

M∥x1 − x2∥2.
First, let us verify that Πn puts probability 1 on SMn,⌊d/2⌋+1. For

any x ∈ [0, 1]d,
mi

ji=0


mi
ji


xjii (1− xi)mi−ji = (xi +1− xi)mi = 1 and


o≤j≤m

d
i=1

mi

ji


xjii (1 − xi)mi−ji = 1.

Thus, for gm satisfying (8),

σ ≤ min
o≤j≤m

gm
j ≤ Bm(x; gm) ≤ max

o≤j≤m
gm
j ≤ σ . (36)

Next, let us consider partial derivatives of Bm(x; gm). By (5), (6), (8)
and (36)

|∂λBm(x, gm)| = |Bm−λ(x;Dm,λ(Gm−λ
; gm))|

≤ max |Dm,λ(Gm−λ
; gm)| ≤ Mn.

Thus, Assumption 3 of Theorem 1 holds.
Next, consider Assumption 5 of Theorem 1. By (31), it suffices

to show that

Πn


gm

: sup
x

|Bm(x; gm) − σ0(x)| ≤ C1/2δn/(2σ(2C̄)0.5)


≥ exp{−nrCδ2

n}.

By theorem B.7 in Appendix B of Heitzinger (2002), |Bm(x; g⋆m) −

σ0(x)| ≤
Md0.5

2m0.5
1

for g⋆m
= σ0(Gm). For gm satisfying maxj |gm

j −

g⋆m
j | ≤ (Mn − M)/((2m1)

⌊d/2⌋+1),

sup
x

|Bm(x; gm) − σ0(x)| ≤ sup
x

|Bm(x; g⋆m) − σ0(x)|

+ sup
x

|Bm(x; g⋆m) − Bm(x; gm)|

≤ [M/2]d0.5/m0.5
1 + (Mn − M)/((2m1)

⌊d/2⌋+1) ≤ Md0.5/m0.5
1 ,

where the last inequality holds for all sufficiently large m1 by the
first convergence result in (34). Also, note that for such gm, the prior
truncation constraint (8) holds (for λ ≤ ⌊d/2⌋ + 1 and x ∈ Gm−λ,
|Dm,λ(x; g⋆m)| = |Dm,λ(σ0)(x)| ≤ M , and, thus, by an analog of (39)
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in Lemma 11, |Dm,λ(x; gm)| ≤ |Dm,λ(x; gm) − Dm,λ(x; g⋆m)| +M ≤

Mn). Therefore,

Πn


sup
x

|Bm(x; gm) − σ0(x)| ≤
C1/2δn

2σ(2C̄)0.5


≥ Πn


sup
x

|Bm(x; gm) − σ0(x)| ≤
Md0.5

m0.5
1


≥ Πn


max

j
|gm

j − g⋆m
j | ≤

Mn − M
(2m1)⌊d/2⌋+1


≥ π (m1+1)d

g ·


Mn − M

(2m1)⌊d/2⌋+1

(m1+1)d

,

where the first inequality holds because δnm0.5
1 → ∞ and the

last inequality follows because the prior density is assumed to be
bounded from below by π

(m1+1)d
g on its support (8).

The last bound in the above inequality combinedwith [(m(n)+
1)d logm(n)]/(nδ2

n) → 0 implies Assumption 5 of Theorem 1. �

Lemma 11. (i) For x = (xi, x−i) ∈ [0, 1]d, where xi ∈ [0, 1],

(Dmi,λi
i f )(xi, x−i) =


λi

ji=1

(mi − λi + ji)


λi

ji=0

f

×


mi − λi

mi
xi +

ji
mi

, x−i

λi

ji


(−1)λi−ji . (37)

(ii) For multi-indices m ≥ λ,

(Dm,λf )(x) =


d

i=1

λi
ji=1

(mi − λi + ji)

 
0≤j≤λ

f

× n

m − λ

m
x +

j
m

 d
i=1

λi

ji


(−1)λi−ji , (38)

where operations on vectors (x, λ,m, j) inside f are coordinate-wise.
(iii) For functions f1 and f2 from [0, 1]d to R,

|(Dm,λf1)(x) − (Dm,λf1)(x)| ≤ (2maxmi)
|λ| sup

x
|f1(x) − f2(x)|. (39)

(iv) If all components of m are the same (mi = m1) and f has bounded
partial derivatives up to order |λ| + 1, then

sup
x

(Dm,λf )(x) − (∂λf )

m − λ

m
x
  → 0 as m1 → ∞. (40)

(v) Eq. (4) holds.

Proof. Formula (37) follows by induction on λi: for λi = 1, the
formula holds by the definition of Dmi,λi

i ; assume it holds for λi.
Then Dmi,λi+1

i f (x)/
λi+1

ji=1 (mi − λi + ji) is equal to

λi
ji=0

f

mi − λi

mi


xi


1 −

1
mi − λi


+

1
mi − λi


+

ji
mi

, x−i



×

λi

ji


(−1)λi−ji −

λi
ji=0

f

mi − λi

mi


xi


1 −

1
mi − λi


+

ji
mi

, x−i

λi

ji


(−1)λi−ji

= f

mi − λi − 1

mi
xi +

0
mi

, x−i


(−1)λi+1

+ f

mi − λi − 1

mi
xi +

λi + 1
mi

, x−i



+

λi
ji=1

f

mi − λi − 1

mi
xi +

ji
mi

, x−i


×


(−1)λi−(ji−1)

 λi

ji − 1


− (−1)λi−ji

λi

ji


and (37) is proved since the last square bracket term is equal to
(−1)λi+1−ji


λi+1
ji


.

Formula (38) follows from repeated application of (37).
Inequality (39) follows immediately from (38) and

λi
ji=0


λi
ji


=

2λi . To prove (40), plug the following Taylor expansion

f

m − λ

m
x +

j
m


=


|l|≤|λ|

∂ lf

m − λ

m
x


1
l!

d
i=1


ji
mi

li


+ R(x, λ,m, j) · (1/m1)
|λ|+1,

where R(x, λ,m, j) is bounded by a constant independent of
(x, λ,m, j) and l! = l1! · · · lk!, into (38) to obtain

(Dm,λf )(x)
d

i=1

λi
ji=1

(m1 − λi + ji)

=


|l|≤|λ|


∂ lf

m − λ

m
x


1
l!

·

d
i=1

λi
ji=0

λi

ji


(−1)λi−ji


ji
m1

li


+


0≤j≤λ

R(x, λ,m, j) · (1/m1)
|λ|+1

d
i=1

λi

ji


(−1)λi−ji .

By properties of binomial coefficients,
λi

ji=0


λi
ji


(−1)λi−ji jlii is

equal to zero if li < λi and λi! if li = λi (Ruiz, 1996). Thus,

(Dm,λf )(x) =

d
i=1

λi
ji=1

(m1 − λi + ji)

m|λ|

1

·


∂λf


m − λ

m
x


+
1
m1


0≤j≤λ

R(x, λ,m, j) ·

d
i=1

λi

ji


(−1)λi−ji



and (40) follows as ∂λf is uniformly bounded.
Eq. (4) follows by a direct calculation,

∂

∂xi
(Bmi

i f )(x) =

mi
ji=1

f (ji/mi, x−i)
mi

ji


jix

ji−1
i (1 − xi)mi−ji

−

mi−1
ji=0

f (ji/mi, x−i)
mi

ji


(mi − ji)x

ji
i (1 − xi)mi−1−ji

=

mi−1
ji=0

mif ((ji + 1)/mi, x−i)
mi − 1

ji


xjii (1 − xi)mi−1−ji

−

mi−1
ji=0

mif (ji/mi, x−i)
mi − 1

ji


xjii (1 − xi)mi−1−ji

=

mi−1
ji=0

(Dmi
i f )(ji/(mi − 1), x−i)

mi − 1
ji


xjii (1 − xi)mi−1−ji

= (Bmi−1
i Dmi

i f )(x). �
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