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INFERENCE IN DYNAMIC DISCRETE CHOICE MODELS WITH
SERIALLY CORRELATED UNOBSERVED STATE VARIABLES

BY ANDRIY NORETS1

This paper develops a method for inference in dynamic discrete choice models with
serially correlated unobserved state variables. Estimation of these models involves com-
puting high-dimensional integrals that are present in the solution to the dynamic pro-
gram and in the likelihood function. First, the paper proposes a Bayesian Markov chain
Monte Carlo estimation procedure that can handle the problem of multidimensional
integration in the likelihood function. Second, the paper presents an efficient algorithm
for solving the dynamic program suitable for use in conjunction with the proposed es-
timation procedure.

KEYWORDS: Dynamic discrete choice models, Bayesian estimation, MCMC, nearest
neighbors, random grids.

1. INTRODUCTION

DYNAMIC DISCRETE CHOICE MODELS (DDCMs) describe the behavior of a
forward-looking economic agent who chooses between several alternatives re-
peatedly over time. Estimation of the deep structural parameters of these mod-
els is a theoretically appealing and promising area in empirical economics. One
important feature of DDCMs that was often assumed away in the literature
due to computational difficulties is serial correlation in unobserved state vari-
ables. Ability, productivity, health status, taste idiosyncrasies, and many other
unobservables are, however, likely to be persistent over time. This paper devel-
ops a computationally attractive method for inference in DDCMs with serially
correlated unobservables.

Advances in simulation methods and computing speed over the last two
decades made the Bayesian approach to statistical inference practical. Bayesian
methods are now applied to many problems in statistics and econometrics that
are difficult to tackle by the classical approach. Static discrete choice mod-
els and, more generally, models with latent variables, are one of those areas
where the Bayesian approach was particularly fruitful; see for example Albert
and Chib (1993), McCulloch and Rossi (1994), and Geweke, Keane, and Run-
kle (1994). Similarly to the static case, the likelihood function for a DDCM
can be thought of as an integral over latent variables (the unobserved state
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variables). If the unobservables are serially correlated, computing this integral
is very hard. A Markov chain Monte Carlo (MCMC) algorithm is employed in
this paper to handle this issue.

An important obstacle for Bayesian estimation of DDCMs is the computa-
tional burden of solving the dynamic program (DP) at each iteration of the
estimation procedure. Imai, Jain, and Ching (2005), from now on IJC, were
the first to attack this problem and consider application of Bayesian methods
for estimation of DDCMs. Their method uses an MCMC algorithm that solves
the DP and estimates the parameters at the same time. The Bellman equation
is iterated only once for each draw of the parameters. To obtain the approx-
imations of the expected value functions for the current MCMC draw of the
parameters, the authors used kernel smoothing over the approximations of the
value functions from the previous MCMC iterations.

This paper extends the work of IJC in several dimensions. IJC employd
MCMC to “solve the DP problem and estimate the parameters simultane-
ously” rather than handle more flexible specifications for unobservables. Their
theory does not apply to a Gibbs sampler that includes blocks for simulating
unobservables. In contrast, I develop an algorithm that applies MCMC to han-
dle serially correlated unobservables and possibly other interesting forms of
heterogeneity that would lead to hard integration problems in computing the
likelihood function. Second, the algorithm developed in this paper can be ap-
plied to more general DDCMs: models with infinite state space and random
state transitions (IJC’s algorithm works for finite state space and deterministic
transitions for all state variables except independent and identically distributed
(i.i.d.) errors). I achieve this more general applicability of the algorithm in part
by using nearest neighbors instead of the kernel smoothing used by IJC. Also,
in addition to approximating the value function in the parameter space, an
algorithm for solving the DP has to deal with an integration problem for com-
puting the expectations of the value functions. My prescriptions for handling
this integration problem differ from IJC’s. Finally, this paper develops theory
that justifies statistical inference made on the basis of the algorithm’s output.
In the Bayesian framework, most inference exercises involve computing poste-
rior expectations of some functions. IJC showed that the last draw from their
algorithm will converge in distribution to the posterior. I show that sample av-
erages from my algorithm can be used to approximate posterior expectations,
and this is exactly how MCMC output is used in practice.

The proposed method was experimentally evaluated on two different
DDCMs: a binary choice model of optimal bus engine replacement (Rust
(1987)) and a model of medical care use and work absence (Gilleskie (1998)).
Experiments are excluded from this paper for brevity. They can be found in
Norets (2007, 2008). In summary, experiments demonstrate that ignoring ser-
ial correlation in unobservables of DDCMs can lead to serious misspecification
errors and that the proposed method for handling serially correlated unobserv-
ables is feasible, accurate, and reliable.
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The paper is organized as follows. Section 2 describes setup and estimation
of a general DDCM. The algorithm for solving the DP and corresponding con-
vergence results are presented in Sections 3 and 4. Proofs of the theoretical
results can be found in the Supplemental Material (Norets (2009b)).

2. SETUP AND ESTIMATION OF DDCMS

Eckstein and Wolpin (1989), Rust (1994), and Aguirregabiria and Mira
(2007) surveyed the literature on estimation of DDCMs. Below, I introduce
a general model setup and emphasize possible advantages of the Bayesian ap-
proach to the estimation of these models, especially in treating the time depen-
dence in unobservables. I also briefly discuss most relevant previous research.

Under weak regularity conditions (see, e.g., Rust (1994)), a DDCM can be
described by the Bellman equation

V (st;θ) = max
dt∈D

V(st� dt;θ)�(1)

where V(st� dt;θ) = u(st� dt;θ) + βE{V (st+1;θ)|st� dt;θ} is an alternative-
specific value function, u(st� dt;θ) is a per-period utility function, st ∈ S is a
vector of state variables, dt is a control from a finite set D, θ ∈ Θ is a vector
of parameters, β is a time discount factor, and V (st;θ) is a value function or
lifetime utility of the agent. The state variables are assumed to evolve accord-
ing to a controlled first order Markov process with a transition law denoted
by f (st+1|st� dt;θ) for t ≥ 1; the distribution of the initial state is denoted by
f (s1|θ). This formulation embraces a finite horizon case if time t is included in
the vector of the state variables.

In estimable DDCMs, some state variables, denoted here by yt , are assumed
to be unobserved by econometricians. The observed states are denoted by xt .
All the state variables st = (xt� yt) are known to the agent at time t. Exam-
ples of the unobserved state variables include taste idiosyncrasy, health status,
ability, and returns to patents. The unobservables play an important role in the
estimation. The likelihood function is a product of integrals over the unobserv-
ables

p(x�d|θ)=
I∏

i=1

∫
p

(
yTi�i� xTi�i� dTi�i� � � � � y1�i� x1�i� d1�i|θ

)
d
(
yTi�i · · ·y1�i

)
�(2)

where (x� y�d) = {xt�i� yt�i� dt�i}Tit=1� i ∈ {1� � � � � I}, I is the number of the ob-
served individuals, Ti is the number of time periods individual i is observed,

p
(
yTi�i� xt�i� dt�i� � � � � y1�i� x1�i� d1�i|θ

)
=

Ti∏
t=1

p(dt�i|yt�i� xt�i;θ)f (xt�i� yt�i|xt−1�i� yt−1�i� dt−1�i;θ)�
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f (·|·;θ) is the state transition density, {x0�i� y0�i� d0�i} = ∅, and p(dt�i|yt�i� xt�i;θ)
is the choice probability conditional on all state variables.

In general, evaluation of the likelihood function in (2) involves computing
multidimensional integrals of an order equal to Ti times the number of compo-
nents in yt , which becomes very difficult for large Ti and/or multidimensional
unobservables yt . That is why in previous literature the unobservables were
often assumed to be i.i.d. In a series of papers, Rust developed a dynamic
multinomial logit model, where he assumed that the utility function of the
agents is additively separable in the unobservables and that the unobservables
are extreme value i.i.d. In this case, the integration in (2) can be performed
analytically. Pakes (1986) used Monte Carlo simulations to approximate the
likelihood function in a model of binary choice with a serially correlated one-
dimensional unobservable. More recently, several authors estimated models
with particular forms of serial correlation in unobservables by adopting the
method of Keane and Wolpin (1994), which uses Monte Carlo simulations to
compute the likelihood and interpolating regressions to speed up the solution
to the DP.2 Even for DDCMs with special forms of serial correlation that re-
duce the dimension of integration in (2), estimation is still very hard. In this
paper, I propose a computationally attractive Bayesian approach to estimation
of DDCMs with serial correlation in unobservables.

In the Bayesian framework, the high-dimensional integration over yt for
each parameter value can be circumvented by employing Gibbs sampling and
data augmentation. In models with latent variables, the Gibbs sampler typically
has two types of blocks: (a) parameters conditional on other parameters, latent
variables, and the data; (b) latent variables conditional on other latent vari-
ables, parameters, and the data (this step is called data augmentation). Draws
from this Gibbs sampler form a Markov chain with the stationary distribution
equal to the joint distribution of the parameters and the latent variables con-
ditional on the data. The densities for both types of blocks are proportional to
the joint density of the data, the latent variables, and the parameters. There-
fore, to construct the Gibbs sampler, we need to be able to evaluate the joint
density of the data, the latent variables, and the parameters. For a textbook
treatment of these ideas, see Chapter 6 in Geweke (2005).

It is straightforward to obtain an analytical expression for the joint density of
the data, the latent variables, and the parameters under the parameterization

2For example, Erdem and Keane (1996) estimated a model in which consumer perceptions of
products are modelled by a sum of a parameter and an i.i.d. component, and thus are serially
correlated. Consumer product usage requirements are modelled similarly in Erdem, Imai, and
Keane (2003). In Sullivan (2006), a job match-specific wage draw persists for the duration of a
match. In Keane and Wolpin (2006), women draw from husbands earnings distribution and the
draw stays fixed for the duration of the match. It is also common to allow for serial correlation in
unobservables induced by latent types (see, for example, Keane and Wolpin (1997)). I thank an
anonymous referee for bringing these references to my attention.
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of the Gibbs sampler in which the unobserved state variables are directly used
as the latent variables in the sampler

p(θ�x�d� y) = p(θ)

I∏
i=1

Ti∏
t=1

p(dt�i|xt�i� yt�i;θ)(3)

× f (xt�i� yt�i|xt−1�i� yt−1�i� dt−1�i;θ)�
where p(dt�i|xt�i� yt�i;θ) = 1{V(yt�i�xt�i�dt�i;θ)≥V(yt�i�xt�i�d;θ)�∀d∈D}(yt�i� xt�i� dt�i;θ) is an
indicator function and p(θ) is a prior density for the parameters. In this Gibbs
sampler, the conditional density of a parameter given the data, the rest of the
parameters, and the latent variables will be proportional to (3). Since (3) in-
cludes a product of indicator functions p(dt�i|yt�i� xt�i;θ), in this Gibbs sampler,
the distributions for parameter blocks will be truncated to a region defined by
inequality constraints that are nonlinear in θ:

V(yt�i� xt�i� dt�i;θ)(4)

≥ V(yt�i� xt�i� d;θ) ∀d ∈ D�∀t ∈ {1� � � � �Ti}�∀i ∈ {1� � � � � I}�
For realistic sample sizes, the number of these constraints is very large and the
algorithm is impractical; for example, parameter draws from an acceptance
sampling algorithm never got accepted in experiments with a sample size of
more than 100 observations. The same situation occurs under the parameteri-
zation in which ut�d�i = u(yt�i� xt�i� dt�i;θ) are used as the latent variables in the
sampler instead of some or all of the components of yt�i.

The complicated truncation region (4) in drawing the parameter blocks
could be avoided if we use Vt�i = {Vt�d�i = V(st�i� d;θ)�d ∈ D} as latent vari-
ables in the sampler. Under this parameterization, the joint density of the
data, the latent variables, and the parameters (needed for construction of
the Gibbs sampler) does not have a convenient analytical form because Vt�d�i

depends on other unobservables through the expected value function, which
can only be approximated numerically. In general, even evaluation of a ker-
nel of this distribution is not easy. However, under some reasonable assump-
tions on the unobservables, a feasible Gibbs sampler can be constructed. In
particular, let us assume that the unobserved part of the state vector in-
cludes some components that do not affect the distribution of the future
state. Let us denote them by νt and denote the other (possibly serially cor-
related) components by εt ; so, yt = (νt� εt). This assumption means that the
transition law f (xt+1� νt+1� εt+1|xt� εt� d;θ) and thus the expected value func-
tion E{V (st+1;θ)|st� d;θ} do not depend on νt .

The presence of νt is well justified in an estimable model. If the support of
these unobservables is sufficiently large and if they enter the utility function
in a particular way, then the econometric model will be consistent with any
possible sequence of observed choices (specification for unobservables is then
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called saturated (Rust (1994, p. 3102))). If, in contrast, all the unobservables
do affect the expected value function E{V (st+1;θ)|st� d;θ}, then the desirable
saturation property might not hold or be very difficult to establish.

Since the expected value function E{V (st+1;θ)|st� d;θ} does not depend
on νt , the alternative specific value functions Vt�i = {u(νt�i� εt�i� xt�i� d;θ) +
βE[V (st+1;θ)|εt�i� xt�i� d;θ]� d ∈D} will depend on νt�i only through u(νt�i� εt�i�
xt�i� d;θ). The per-period utility u(·) and the distribution for νt�i can be speci-
fied in such a way that p(Vt�i|θ�xt�i� εt�i) has a convenient analytical expression
(or at least a quickly computable density kernel). In this case, a marginal condi-
tional decomposition of the joint distribution of the data, the parameters, and
the latent variables will consist of parts with analytical or easily computable
expressions. Construction of the Gibbs sampler in this case is illustrated by the
following example.

EXAMPLE 1—A Model of Optimal Bus Engine Replacement (Rust (1987)):
In this model, a maintenance superintendent of a transportation company de-
cides every time period whether to replace an engine for each bus in the com-
pany’s fleet. The observed state variable is bus mileage xt since the last en-
gine replacement. The per-period utility is the negative of per-period costs. If
the engine is not replaced at time t, then u(xt� εt� νt� dt = 1;α) = α1xt + εt ;
otherwise, u(xt� εt� νt� dt = 2;α) = α2 + νt , where εt and νt are the unob-
served state variables, α1 is the negative of per-period maintenance costs
per unit of mileage, and α2 is the negative of the costs of engine replace-
ment. The bus mileage is discretized into M = 90 intervals X = {1� � � � �M}.
The change in the mileage (xt+1 − xt) evolves according to a multinomial dis-
tribution on {0�1�2} with parameters η= (η1�η2�η3).

Rust assumed that εt and νt are extreme value i.i.d. Under this assumption,
the integrals over yt = (εt� νt) in the Bellman equation (1) and in the likelihood
function (2) can be computed analytically. Rust used the maximum likelihood
method to estimate the model. Since the expression for the likelihood function
involves the expected value functions, Rust’s algorithm solves the DP numer-
ically on each iteration of the estimation procedure. Rust’s assumptions on
unobservables considerably reduce computational burden. However, it is rea-
sonable to expect that engine-specific maintenance costs represented by εt are
serially correlated. Thus, one could assume νt is i.i.d. N(0�h−1

ν ) truncated to an
interval [−ν� ν], εt is N(ρεt−1�h

−1
ε ) truncated to E = [−ε� ε], and ε0 = 0. When

εt is serially correlated, the dimension of integration in the likelihood function
can exceed 200 for Rust’s data. It would be very hard to compute these inte-
grals on each iteration of an estimation procedure. The Gibbs sampler with
data augmentation described below can handle this problem.

Each bus/engine i is observed for Ti time periods: {xt�i� dt�i}Tit=1 for i =
1� � � � � I. When the engine is replaced, the state is reinitialized: xt−1 = 1,
εt−1 = 0. Therefore, a bus with a replaced engine can be treated as a separate
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observation. The parameters are θ = (α�η�ρ�hε); hν is fixed for normaliza-
tion. The latent variables are {Vt�i� εt�i}Tit=1, i = 1� � � � � I, where Vt�i = xt�iα1 −
α2 + εt�i − νt�i + Ft�i(θ� εt�i) and Ft�i(θ� ε) = β(E[V (x′� ε′� ν′;θ)|ε�xt�i� dt�i =
1;θ] − E[V (x′� ε′� ν′;θ)|ε�xt�i� dt�i = 2;θ]). A compact space for parame-
ters (required by the theory in the following sections) Θ is defined as αi ∈
[−α�α], ρ ∈ [−ρ�ρ], hε ∈ [hl

ε�h
r
ε], and η belongs to a two-dimensional sim-

plex.
The joint distribution of the data, the parameters, and the latent vari-

ables is

p(θ; {xt�i� dt�i; Vt�i� εt�i}Tit=1; i = 1� � � � � I)(5)

= p(θ)

I∏
i=1

Ti∏
t=1

[
p(dt�i|Vt�i)p(Vt�i|xt�i� εt�i;θ)

×p(xt�i|xt−1�i;dt−1�i;η)p(εt�i|εt−1�i� ρ�hε)
]
�

where p(θ) is a prior,

p(xt�i|xt−1�i;dt−1�i;η)= ηxt�i−xt−1�i+1�

p(dt�i|Vt�i)= 1{dt�i=1�Vt�i≥0 or dt�i=2�Vt�i<0}�

p(εt�i|εt−1�i� θ)

= h1/2
ε exp {−0�5hε(εt�i − ρεt−1�i)

2}√
2π[([ε− ρεt−1�i]h0�5

ε )−([−ε− ρεt−1�i]h0�5
ε )]1E(εt�i)�

and

p(Vt�i|xt�i� εt�i;θ)
= exp

{−0�5hν

(
Vt�i − [xt�iα1 − α2 + εt�i + Ft�i(θ� εt�i)]

)2}
(6)

· 1[−ν�ν]
(

Vt�i − [xt�iα1 − α2 + εt�i + Ft�i(θ� εt�i)]
)

(7)

· h0�5
ν√

2π[(νh0�5
ν )−(−νh0�5

ν )] �

Densities for Gibbs sampler blocks will be proportional to the joint distribu-
tion in (5). In this Gibbs sampler the observed choice optimality constraints
do not involve parameters and affect only blocks for simulating Vt�i| · · ·, which
will have a normal truncated distribution proportional to (6) and (7), and also
truncated to R+ if dt�i = 1 or to R− otherwise. Efficient algorithms for simulat-
ing from truncated normal distributions are readily available; see, for example,
Geweke (1991).



1672 ANDRIY NORETS

The density for εt�i| · · · is

p(εt�i| · · ·)

∝ exp {−0�5hν(Vt�i − [xt�iα1 − α2 + εt�i + Ft�i(θ� εt�i)])2}
([ε− ρεt−1�i]h0�5

ε )−([−ε− ρεt−1�i]h0�5
ε )

· 1[−ν�ν]
(

Vt�i − [xt�iα1 − α2 + εt�i + Ft�i(θ� εt�i)]
)

· exp{−0�5hε(εt+1�i − ρεt�i)
2 − 0�5hε(εt�i − ρεt−1�i)

2} · 1E(εt�i)�(8)

Direct simulation from εt�i| · · · could be difficult. However, the kernel of this
density can be evaluated numerically (approximations to Ft�i(θ� εt�i) are dis-
cussed in the next section). Therefore, a Metropolis-within-Gibbs3 algorithm
can be used for this Gibbs sampler block. A convenient transition density for
this Metropolis-within-Gibbs step is a truncated normal density proportional
to (8).

Assuming a normal prior N(ρ�h−1
ρ ) truncated to [−ρ�ρ],

p(ρ| · · ·) ∝
exp

{
−0�5hν

∑
i�t

(Vt�i − [xt�iα1 − α2 + εt�i + Ft�i(θ� εt�i)])2

}
∏
i�t

([ε− ρεt−1�i]h0�5
ε )−([−ε− ρεt−1�i]h0�5

ε )

·
∏
i�t

1[−ν�ν]
(

Vt�i − [xt�iα1 − α2 + εt�i + Ft�i(θ� εt�i)]
)

· exp{−0�5hρ(ρ− ρ)2} · 1[−ρ�ρ](ρ)�(9)

where hρ = hρ + ∑
i

∑Ti
t=2 ε

2
t−1�i and ρ = h−1

ρ (hρρ + hε

∑
i

∑Ti
t=2 εt�iεt−1�i).

A Metropolis-within-Gibbs algorithm with truncated normal transition den-
sity proportional to (9) can be used for this Gibbs sampler block. Blocks for
other parameters can be constructed in a similar way; see Norets (2007).

The Gibbs sampler presented in this example can be generalized and ap-
plied to different models with other interesting forms of heterogeneity such as
individual-specific parameters. Also, components of νt do not have to enter the
utility function linearly. The essential requirement is the ability to evaluate a
kernel of p(Vt�i|θ�xt�i� εt�i) quickly. The Gibbs sampler outlined above requires
computing the expected value functions for each new parameter draw θm from

3To produce draws from some target distribution, the Metropolis or Metropolis–Hastings
MCMC algorithm only needs values of a kernel of the target density. The draws are simulated
from a transition density and they are accepted with probability that depends on the values of
the target density kernel and the transition density. For more details, see, for example, Chib and
Greenberg (1995).
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the MCMC iteration m and each observation in the sample. The following sec-
tion describes how the approximations of the expected value functions can be
efficiently obtained.

3. ALGORITHM FOR SOLVING THE DP

For a discussion of methods for solving the DP for a given parameter vec-
tor θ, see Rust (1996). Below, I introduce a method of solving the DP suitable
for use in conjunction with the Bayesian estimation of a general DDCM. This
method uses an idea from Imai, Jain, and Ching (2005): to iterate the Bellman
equation only once at each step of the estimation procedure and use infor-
mation from previous steps to approximate the expectations in the Bellman
equation. However, the way the previous information is used differs for the
two methods. A detailed comparison is given in Section 3.2.

3.1. Algorithm Description

In contrast to conventional value function iteration, this algorithm iterates
the Bellman equation only once for each parameter draw. First, I will describe
how the DP solving algorithm works and then how the output of the DP solving
algorithm is used to approximate the expected value functions in the Gibbs
sampler.

The DP solving algorithm takes a sequence of parameter draws θm, m =
1�2� � � � � as an input from the Gibbs sampler, where m denotes the Gibbs sam-
pler iteration. For each θm, the algorithm generates random states sm�j ∈ S,
j = 1� � � � � N̂(m). At each random state, the approximations of the value func-
tions V m(sm�j;θm) are computed by iterating the Bellman equation once. At
this one iteration of the Bellman equation, the future expected value functions
are computed by importance sampling over value functions V k(sk�j;θk) from
previous iterations k<m.

The random states sm�j are generated from a density g(·) > 0 on S. This den-
sity g(·) is used as an importance sampling source density in approximating the
expected value functions. The collection of the random states {sm�j}N̂(m)

j=1 will be
referred to below as the random grid. (Rust (1997) showed that value func-
tion iteration on random grids from a uniform distribution breaks the curse
of dimensionality for DDCMs.) The number of points in the random grid at
iteration m is denoted by N̂(m) and will be referred to below as the size of the
random grid (at iteration m).

For each point in the current random grid sm�j , j = 1� � � � � N̂(m), the approx-
imation of the value function V m(sm�j;θm) is computed according to

V m(s;θ) = max
d∈D

{
u(s�d;θ)+βÊ(m)[V (s′;θ)|s�d;θ]}�(10)
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Not all of the previously computed value functions V k(sk�j;θk), k < m, are
used in importance sampling for computing Ê(m)[V (s′;θ)|s�d;θ] in (10). To
converge, the algorithm has to forget the remote past. Thus, at each itera-
tion m, I keep track only of the history of length N(m): {θk; sk�j� V k(sk�j;θk)�

j = 1� � � � � N̂(k)}m−1
k=m−N(m). In this history, I find Ñ(m) closest to θ parame-

ter draws. Only the value functions corresponding to these nearest neigh-
bors are used in importance sampling. Formally, let {k1� � � � �kÑ(m)} be the
iteration numbers of the nearest neighbors of θ in the current history: k1 =
arg mini∈{m−N(m)�����m−1}‖θ− θi‖ and

kj = arg min
i∈{m−N(m)�����m−1}\{k1�����kj−1}

‖θ− θi‖� j = 2� � � � � Ñ(m)�(11)

If the arg min returns a multivalued result, I use the lexicographic order for
(θi − θ) to decide which θi is chosen first. If the result of the lexicographic
selection is also multivalued, θi = θj , then I choose θi over θj if i > j. This par-
ticular way to resolve the multivaluedness of the arg min might seem irrelevant
for implementing the method in practice; however, it is used in the proof of the
measurability of the supremum of the approximation error, which is necessary
for the uniform convergence results. A reasonable choice for the norm in (11)
would be ‖θ‖ = √

θTHθθ, where Hθ is the prior precision for the parameters.
Importance sampling is performed as

Ê(m)[V (s′;θ)|s�d;θ](12)

=
Ñ(m)∑
i=1

N̂(ki)∑
j=1

V ki(ski�j;θki) · f (ski�j | s�d;θ)/g(ski�j)
Ñ(m)∑
r=1

N̂(kr )∑
q=1

f (skr �q | s�d;θ)/g(skr�q)

=
Ñ(m)∑
i=1

N̂(ki)∑
j=1

V ki(ski�j;θki)Wki�j�m(s�d�θ)�(13)

The target density for importance sampling is the state transition density
f (·|s�d;θ). The source density is the density g(·) from which the random grid
on the state space is generated. In general, g(·) should give reasonably high
probabilities to all parts of the state space that are likely under f (·|s�d;θ) with
reasonable values of the parameter θ. To reduce the variance of the approx-
imation of expectations produced by importance sampling, one should make
g(·) relatively high for the states that result in large absolute values for value
functions (g(s′) that minimizes the variance of the importance sampling ap-
proximation to the expectation is proportional to |V (s′;θ)f (s′|s�d;θ)|).
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Section 3.3 formally presents the assumptions on model primitives and re-
strictions on g(·), N̂(m), N(m), and Ñ(m) that are sufficient for algorithm
convergence.

After V m(sm�j;θm) are computed from (10) and (12), they can be used in
a formula similar to (12) to obtain the approximations of the expectations
E[V (st+1;θm)|xt�i� ε

m
t�i� d;θm] on iteration m of the Gibbs sampler.

3.2. Comparison With Imai, Jain, and Ching (2005)

An algorithm for solving the DP has to deal with an integration problem
for computing the expectations of the value functions in addition to approxi-
mating the value function in the parameter space. My prescriptions for han-
dling this integration problem differ from IJC’s. IJC used kernel smoothing
over all N(m) previously computed value functions to approximate the ex-
pected value functions. They also generated only one new state at each itera-
tion, N̂(m) = 1 ∀m. For a finite observed state space, deterministic transitions
for the observed states, and i.i.d. unobservables IJC proved convergence of
their DP solution approximations. To handle compact state space and random
state transitions I introduce growing random grids: N̂(m) increases with m.
A fixed random grid size that works for IJC’s i.i.d. errors does not seem to
be enough for general random transitions. When the size of the random grid
grows, the nearest neighbor (NN) algorithm that I use to approximate value
functions in the parameter space is computationally much more efficient than
the kernel smoothing used by IJC. The computational advantage of using the
NN algorithm in this case stems from the fact that importance sampling over
the random grids has to be performed only for a few nearest neighbors and not
for the whole tracked history of length N(m). The convergence results I ob-
tain are also stronger. IJC proved uniform convergence in probability for their
DP solution approximations. For the NN algorithm, I establish complete uni-
form convergence, which implies uniform a.s. convergence. Furthermore, the
NN algorithm easily accommodates more than one iteration of the Bellman
equation for each parameter draw to improve the approximation precision in
practice. Overall, the nearest neighbors method is not just a substitute for ker-
nel smoothing that might work better in higher dimensions (see, e.g., Scott
(1992, pp. 189–190)), but an essential part of the algorithm that, in conjunc-
tion with random grids, makes it computationally efficient and applicable to
more general model specifications.

3.3. Theoretical Results

The following assumptions on the model primitives and the algorithm para-
meters are made:

ASSUMPTION 1: Θ⊂ RJΘ and S ⊂RJS are compact, and β ∈ (0�1) is known.
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The assumption of compactness of the parameter space is standard in econo-
metrics. Fixing β is also a usual practice in the literature on estimation of
DDCMs.

ASSUMPTION 2: u(s�d;θ) is continuous in (θ� s) (and thus bounded on com-
pacts).

ASSUMPTION 3: f (s′|s�d;θ) is continuous in (θ� s� s′) and g(s) is continuous
in s. Discrete state variables can be accommodated by defining densities with re-
spect to the counting measure.

Assumptions 1–3 imply continuity of V (s;θ) in (θ� s) (see Proposition 4 in
the Supplemental Material (Norets (2009b)) or Norets (2009a) for more gen-
eral results).

ASSUMPTION 4: The density of the state transition f (·|·) and the importance
sampling density g(·) are bounded above and away from zero, which gives

inf
θ�s′�s�d

f (s′|s�d;θ)/g(s′)≥ f > 0 and

sup
θ�s′�s�d

f (s′|s�d;θ)/g(s′)≤ f <∞�

Assumption 4 can be relaxed. The support of the transition density can be
allowed to depend on the decision d and the discrete state variables if they take
a finite number of values. Deterministic transitions for discrete state variables
and, in some cases, for continuous state variables (e.g., setting εt = 0 when
dt = 2 in Rust’s engine replacement model) can be accommodated. Corollar-
ies 1 and 2 below describe changes in the DP solving algorithm required to
relax Assumption 4.

ASSUMPTION 5: ∃δ̂ > 0 such that P(θm+1 ∈ A|ωm) ≥ δ̂λ(A) for any Borel
measurable A ⊂ Θ, any m, and any feasible history ωm = {ω1� � � � �ωm}, where λ
is the Lebesgue measure. The history includes all the parameter and latent vari-
able draws from the Gibbs sampler and all the random grids from the DP solving
algorithm: ωt = {θt� V t � εt; st�j� j = 1� � � � � N̂(t)}.

Assumption 5 means that at each iteration of the algorithm, the parameter
draw can get into any part of Θ. This assumption should be verified for each
specific DDCM and the corresponding parameterization of the Gibbs sam-
pler. The assumption is only a little stronger than standard conditions for con-
vergence of the Gibbs sampler; see Corollary 4.5.1 in Geweke (2005). Since
a careful practitioner of MCMC would have to establish convergence of the
Gibbs sampler, a verification of Assumption 5 should not require much extra
effort.
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ASSUMPTION 6: Let 1 > γ0 > γ1 > γ2 ≥ 0 and N(t) = [tγ1], Ñ(t) = [tγ2],
N̂(t)= [tγ1−γ2], and N̂(0)= 1, where [x] is the integer part of x.

Multiplying the functions of t in Assumption 6 by positive constants will not
affect any of the theoretical results below.

THEOREM 1: Under Assumptions 1–6, the approximation to the expected value
function in (12) converges uniformly and completely to the exact value: that is, the
following statements hold:

(i) sups�θ�d |Ê(t)[V (s′;θ) | s�d;θ] −E[V (s′;θ) | s�d;θ]| is measurable.
(ii) For any ε̃ > 0 there exists a sequence {zt} such that

∑∞
t=0 zt <∞ and

P
(

sup
s�θ�d

∣∣Ê(t)[V (s′;θ) | s�d;θ] −E[V (s′;θ) | s�d;θ]∣∣> ε̃
)

≤ zt�

COROLLARY 1: Let the state space be a product of a finite set Sf and a
bounded rectangle Sc ∈ RJSc , S = Sf × Sc . Let f (s′

f � s
′
c|sf � sc;θ) be the state

transition density with respect to the product of the counting measure on Sf

and the Lebesgue measure on Sc . Assume for any sf ∈ Sf and d ∈ D, we
can define S(sf � d) ⊂ S such that f (s′

f � s
′
c|sf � sc� d;θ) > 0 for any (s′

f � s
′
c) ∈

S(sf � d) and any sc ∈ Sc and f (s′
f � s

′
c|sf � sc� d;θ) = 0 for any (s′

f � s
′
c) /∈ S(sf � d)

and any sc ∈ Sc . For each sf ∈ Sf and d ∈ D, let density gsf �d(·) be such
that infθ∈Θ�(s′

f
�s′c)∈S(sf �d)�sc∈Sc f (s

′
f � s

′
c|sf � sc� d;θ)/gsf �d(s

′
f � s

′
c) ≥ f > 0 and

supθ∈Θ�(s′
f
�s′c)∈S(sf �d)�sc∈Sc f (s

′
f � s

′
c|sf � sc� d;θ)/gsf �d(s

′
f � s

′
c) ≤ f < ∞. In the DP solv-

ing algorithm, generate the random grid over the state space for each discrete state
sf ∈ Sf and decision d ∈ D: sm�j

sf �d
∼ gsf �d(·), and use these grids to compute the

approximations of the expectations E(V (s′;θ)|sf � sc� d;θ). Then the conclusions
of Theorem 1 hold.

COROLLARY 2: If the transition for the discrete states is independent from the
other states, then a more efficient alternative would also work. Let us denote
the transition probability for the discrete states by f (s′

f |sf � d;θ). Suppose that for
f (s′

c|sc� d;θ) and some g(·) defined on Sc , Assumption 4 holds and the random
grid sm�j

c is generated only on Sc from g(·). Consider the following approximation
of the expectations, Ê(m)[V (s′;θ)|sf � sc� d;θ], in the DP solving algorithm:∑

s′
f
∈Sf (sf �d)

f (s′
f |sf � d;θ)(14)

×
Ñ(m)∑
i=1

N̂(ki)∑
j=1

V ki(s′
f � s

ki�j;θki)f (ski�j | s�d;θ)/g(ski�j)
Ñ(m)∑
r=1

N̂(kr )∑
q=1

f (skr �q | s�d;θ)/g(skr�q)
�
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where Sf (sf � d) denotes the set of possible future discrete states given the current
state sf and decision d. Then the conclusions of Theorem 1 hold.

4. CONVERGENCE OF POSTERIOR EXPECTATIONS

In Bayesian analysis, most inference exercises involve computing posterior
expectations of some functions. For example, the posterior mean and the pos-
terior standard deviation of a parameter and the posterior probability that a
parameter belongs to a set can all be expressed in terms of posterior expec-
tations. More importantly, the answers to the policy questions that DDCMs
address also take this form. Using the uniform complete convergence of the
approximations of the expected value functions, I prove the complete conver-
gence of the approximated posterior expectations under mild assumptions on
a kernel of the posterior distribution.

ASSUMPTION 7: Assume that εt�i, θ, and νt�k�i have compact supports E, Θ,
and [−ν� ν] correspondingly, where νt�k�i denotes the kth component of νt�i. Let
the joint posterior distribution of the parameters and the latent variables be pro-
portional to a product of a continuous function and indicator functions,

p(θ� V� ε;F |d�x) ∝ r(θ� V� ε;F(θ�ε)) · 1Θ(θ)(15)

·
(∏

i�t

1E(εt�i)p(dt�i|Vt�i)

)

·
(∏

i�t�k

1[−ν�ν]
(
qk(θ� Vt�i� εt�i� Ft�i(θ� εt�i))

))
�

where r(θ� V� ε;F) and qk(θ� Vt�i� εt�i� Ft�i) are continuous in (θ� V� ε�F), F =
{Ft�d�i�∀i� t� d} stands for a vector of the expected value functions, and Ft�i are the
corresponding subvectors. Also assume that the level curves of qk(θ� Vt�i� εt�i� Ft�i)
corresponding to ν and −ν have zero Lebesgue measure,

λ[(θ� V� ε) :qk(θ� Vt�i� εt�i� Ft�i)= ν](16)

= λ[(θ� V� ε) :qk(θ� Vt�i� εt�i� Ft�i)= −ν] = 0�

This assumption is likely to be satisfied for most models formulated on a
bounded state space, in which distributions are truncated to bounded regions
required by the theory. The kernel of the joint distribution for the engine
replacement example from Section 2 has the form in (15). Condition (16) is
also easy to verify. In Rust’s model, qd(θ� Vt�i� εt�i� Ft�i) = �u(xt�i� d) + εt�d�i +
Ft�d�i(θ� εt�i) − Vt�d�i = ν defines a continuous function Vt�d�i = �u(xt�i� d) +
εt�d�i + Ft�d�i(θ� εt�i) − ν. Since the Lebesgue measure of the graph of a con-
tinuous function is zero, (16) will be satisfied.
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THEOREM 2: Let h(θ� V� ε) be a bounded function. Under Assumptions 1–7,
the expectation of h(θ� V� ε) with respect to the approximated posterior that uses
the DP solution approximations F̂n from step n of the DP solving algorithm con-
verges completely (and thus a.s.) to the true posterior expectation of h(θ� V� ε)
as n → ∞. In particular, for any ε > 0, there exists a sequence {zn} such that∑∞

n=0 zn < ∞ and the probability

P

(∣∣∣∣
∫

h(θ� V� ε)p(θ� V� ε;F |d�x)d(θ� V� ε)

−
∫

h(θ� V� ε)p(θ� V� ε; F̂n|d�x)d(θ� V� ε)

∣∣∣∣> ε

)

is bounded above by zn.

One way to apply Theorem 2 is to stop the DP solving algorithm at an itera-
tion m and run the Gibbs sampler for extra n iterations using the DP solution
Ê(m)[V (s′;θ)|s�d;θ] from iteration m. If the Gibbs sampler is uniformly er-
godic (see Tierney (1994)) for any fixed approximation Ê(m)[V (s′;θ)|s�d;θ],
then for any δ > 0 and ε > 0 there exist m and N such that for all n≥ N ,

P

(∣∣∣∣∣1
n

m+n∑
i=m+1

h(θi� V i� εi)

−
∫

h(θ� V� ε)p(θ� V� ε;F |d�x)d(θ� V� ε)

∣∣∣∣∣> ε

)
≤ δ�

If we do not stop the DP solving algorithm and run it together with the Gibbs
sampler, then the stochastic process for (θi� V i� εi) will not be a Markov chain.
In this case, results from the adaptive MCMC literature (e.g., Roberts and
Rosenthal (2006)) can be adapted to prove laws of large numbers and conver-
gence in distribution for (θi� V i� εi).

THEOREM 3: Let us define the following two conditions. (a) The MCMC algo-
rithm that uses the exact DP solutions is uniformly ergodic: for any ε > 0 there is
N such that∥∥PN((θ� V� ε)� ·;F)− P(·;F |d�x)∥∥ ≤ ε

for any (θ� V� ε), where PN(·� ·) is the Markov transition kernel implied by N iter-
ations of the MCMC algorithm, P(·;F |d�x) is the posterior probability measure,
and ‖ · ‖ is the bounded variation norm.



1680 ANDRIY NORETS

(b) The transition kernel that uses the approximate DP solutions converges uni-
formly in probability to the transition kernel that uses the exact solutions

sup
θ�V�ε

∥∥P((θ� V� ε)� ·;F)− P((θ� V� ε)� ·;Fn)
∥∥ P→ 0� as n → ∞�

Conditions (a) and (b) imply the following two results:
(i) The MCMC algorithm that uses the approximate DP solutions is ergodic:

for any (θ0� V 0� ε0) and any ε > 0 there exists M such that for any i ≥M ,

sup
A

∣∣P((θi� V i� εi) ∈ A|θ0� V 0� ε0)− P(A;F |d�x)∣∣ ≤ ε�

(ii) A weak law of large numbers (WLLN) holds: for any (θ0� V 0� ε0) and a
bounded function h(·),

n∑
i=1

h(θi� V i� εi)
/
n

P→
∫

h(θ� V� ε)p(θ� V� ε;F |d�x)d(θ� V� ε)�

Norets (2007) showed how to establish condition (a) for the MCMC algo-
rithm used for inference in the engine replacement example. A verification of
condition (b) involves arguments and assumptions similar to those employed
in the statement and proof of Theorem 2. (Theorem 2 implies strong conver-
gence for the approximated posterior probability, while here we need a similar
result for the approximated Markov transition probability.)

5. CONCLUSION

This paper presents a feasible method for Bayesian inference in dynamic dis-
crete choice models with serially correlated unobserved state variables. I con-
struct the Gibbs sampler, employing data augmentation and Metropolis steps,
that can successfully handle multidimensional integration in the likelihood
function of these models. The computational burden of solving the DP at
each iteration of the estimation algorithm can be reduced by efficient use of
the information obtained on previous iterations. Serially correlated unobserv-
ables are not the only possible source of intractable integrals in the likeli-
hood function of DDCMs. The Gibbs sampler algorithm can be extended to
allow for other interesting features in DDCMs such as individual-specific coef-
ficients, missing data, macroshocks, and cohort effects. The proposed theoret-
ical framework is flexible and leaves room for experimentation. For details on
implementation and experiments, the interested reader is referred to Norets
(2007, 2008). Overall, combined with efficient DP solution strategies, standard
computational tools of Bayesian analysis seem to be very promising in making
more elaborate DDCMs estimable.
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