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1. INTRODUCTION

1.1. Background

A dynamic discrete choice model is a dynamic programme with discrete controls. These models
have been used widely in various fields of economics, including labour economics, health
economics, and industrial organization. See Eckstein and Wolpin (1989), Rust (1994), Pakes
(1994), Miller (1997), Aguirregabiria and Mira (2010) and Keane et al. (2011) for surveys of the
literature. In such models, a forward-looking decision-maker chooses an action from a finite set
in each time period. The actions affect decision-makers’ per-period payoffs and the evolution
of state variables. The decision-maker maximizes the expected sum of current and discounted
future per-period payoffs. Structural estimation of dynamic discrete choice models is especially
useful for evaluating the effects of counterfactual changes in the decision environment. The main
objective of this article is to provide a robust method for inference about counterfactuals and
structural parameters.

In estimable models, some state variables might be unobserved by econometricians.
Introduction of these variables into the model is motivated by the fact that individuals always
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have more information about their preferences than econometricians. Also, unobserved state
variables play an important operational role in estimation as they help make the model capable
of rationalizing observed data (see Section 3.1 in Rust (1994)). To our knowledge, previous work
estimating dynamic discrete choice models assumed specific parametric forms of the distribution
of unobserved state variables. For example, normally distributed utility shocks are mostly used in
applications of the interpolation simulation method of Keane and Wolpin (1994) and the Bayesian
estimation methods of Imai et al. (2009) and Norets (2009); in the methods of Rust (1987) and
Hotz and Miller (1993), extreme value independently identically distributed (i.i.d.) unobserved
states are often used to alleviate the computational burden of solving and estimating the dynamic
programme.

It is well-known that imposing distributional assumptions can have substantial effect on
inference in economic models (a discussion of this can be found, for example, in Manski
(1999)). Therefore, it is desirable to provide estimation methods that employ restrictions implied
by economic theory such as monotonicity, concavity, and independence and avoid strong
distributional assumptions on unobserved states. This has been done for static binary choice
models; see, for example, Manski (1975), Cosslett (1983), Han (1987), and Matzkin (1992). We
provide a semiparametric approach for inference in dynamic binary choice models (DBCMs). The
approach can be used as a set of tools for evaluating robustness of existing parametric estimation
methods with respect to distributional assumptions on unobserved states.

1.2. Model, objects of interest, and identification

We consider models with conditionally independent and additively separable unobserved states
as in Rust (1987) and Hotz and Miller (1993). The observed states are assumed to take only a
finite number of possible values. The per-period payoffs can be specified parametrically or non-
parametrically with optional shape restrictions such as monotonicity or concavity. Using data
on individual actions and transitions for the observed state variables, the econometrician can
estimate non-parametrically the transition probabilities for the observed states and conditional
choice probabilities (CCPs), which are the probabilities of choosing an action conditional on the
observed states.

Applied researchers are mainly interested in inference procedures for model primitives such
as per-period payoffs and model predictions resulting from counterfactual changes in model
primitives. Counterfactual changes we consider include changes in per-period payoffs and
changes in transition probabilities for observed states. In a model of job search, an example of
the former would be an increase in per-period unemployment insurance payment and an example
of the latter would be a change in duration of unemployment insurance. Model predictions for
counterfactual experiments can be summarized by the resulting CCPs, which we will call the
counterfactual CCPs in contrast to the actual CCPs corresponding to the data-generating process.
Results of counterfactual experiments seem to be of most interest in applications. Therefore, we
emphasize the counterfactual CCPs as the main object of interest and treat the distribution of
unobserved states and the per-period payoffs as nuisance parameters. We develop a separate set
of results for parameters of per-period payoffs as sometimes they are of interest as well.

As a starting point for inference, we provide identification results for per-period payoffs
and counterfactual CCPs under known and unknown distributions of the unobserved states.
Magnac and Thesmar (2002) showed that per-period payoffs are non-parametrically not identified
even under a known distribution of unobserved states. First, we show that exogenous variation in
transitions for the observed states can lead to nonparametric point identification of the per-period
payoffs under a known distribution of unobserved states. Second, we derive conditions under
which normalizations on per-period payoffs, which are sufficient for point identification, affect
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or do not affect counterfactual predictions under a known distribution of unobserved states. Third,
we show that when the distribution of the unobserved states is not assumed to be known, per-
period payoffs and counterfactual CCPs are only set identified even under parametric or shape
restrictions on the per-period payoffs. Next, we show that even when per-period payoffs are non-
parametrically not point-identified under known distribution of unobserved states, the identified
set for the counterfactual CCPs under an unknown distribution of unobserved states can still be
informative. The size of the identified set decreases with additional shape or parametric restrictions
on the per-period payoffs. Finally, we provide characterizations of the identified sets for the per-
period payoffs and counterfactual CCPs under an unknown distribution of unobserved states,
which are convenient for numerical construction of the identified sets and for use in inferential
procedures.

1.3. Inference

We show that in our framework the model can be reparameterized so that the observed state
transition probabilities, the actual CCPs, and the counterfactual CCPs can be treated as the
parameters. The counterfactual CCPs do not enter the likelihood function directly. They are only
partially identified by the restrictions the model places on all the parameters jointly. These model
restrictions require the actual and counterfactual CCPs to be consistent with some distribution of
unobserved states, counterfactual primitives, actual observed state transition probabilities, and
some actual per-period payoffs that satisfy (optional) shape restrictions.

We choose the Bayesian approach to inference, which has the following advantages in
our settings. First, even under an unknown distribution of unobserved states, DBCMs impose
strong restrictions on the actual CCPs. These restrictions should be exploited in estimation.
It is conceptually straightforward to incorporate them into the Bayesian estimation procedure
through the restrictions on the prior support. Second, the parameters are very high-dimensional
and the model restrictions are complicated. In these settings, Markov Chain Monte Carlo (MCMC)
methods are instrumental in making inference procedures computationally feasible.

To simplify the specification of the prior and the construction of the MCMC algorithm, we
do not treat the per-period payoffs as parameters explicitly in our estimation procedure for the
counterfactual CCPs. The per-period payoffs are only implicitly present in verification of model
restrictions on the prior support for the observed state transition probabilities, the actual CCPs, and
the counterfactual CCPs. We can recover the identified set for the per-period payoffs separately
from the estimation of counterfactual CCPs. The MCMC output from the estimation procedure
can be used for construction of frequentist confidence sets for partially identified counterfactual
CCPs and parameters of per-period payoffs.

1.4. Application

We illustrate our method using a model of bus engine replacement (Rust, 1987). We find that
assuming a specific parametric distribution for unobserved states can have a large impact on
the estimation of parameters of the per-period payoffs. In particular, without the distributional
assumptions on the unobserved states, the identified set for the parameters of the linear per-
period payoffs in Rust’s model includes values that are 5 times larger than the values used in
the data-generating process with the extreme value distributed unobserved states. Moreover, if
the linearity of the payoff function is not imposed, then the identified set for payoffs in Rust’s
model includes values that are more than 3 orders of magnitude different from the DGP values.
On the other hand, we find that the identified set of the counterfactual CCPs can be small in most
dimensions relative to the sampling variation in the actual CCPs for realistic sample sizes. Thus,
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in our example parametric assumptions about the distribution of the unobserved states have a
small effect on the counterfactual CCPs for most but not all of the observed states.

We also demonstrate that our inference framework can be supplemented with optional
restrictions on the quantiles of the unobserved state distribution. This can be used for incorporating
information about these quantiles if it is available to researchers. Alternatively, one can use this
to do robustness checks on how deviations from the assumed distributions of unobserved states
affect estimation results.

The rest of the article is organized as follows. Section 2 describes identification results for
the per-period payoffs and the counterfactual CCPs under known and unknown distributions of
unobserved states. In Section 3, we discuss the Bayesian approach to inference, its relation to
other approaches, and ways to conduct frequentist inference. The MCMC estimation algorithm
and prior specification are discussed in the context of the application in Section 4. Section 5
presents estimation results and the identified sets for the per-period payoffs, the time discount
factor, and the counterfactual CCPs for Rust (1987) model. Proofs and algorithm implementation
details are delegated to appendices. Estimation algorithms and results for a firm entry and exit
model are presented in a Supplementary Appendix, Norets and Tang (2013). Computer codes are
available on the website of the Review of Economic Studies.

2. IDENTIFICATION

2.1. Model setup

In an infinite-horizon dynamic binary choice model, the agent maximizes the expected discounted
sum of the per-period payoffs

V (xt,εt)= max
dt,dt+1,···

Et(
∞∑

j=0

β ju(xt+j,dt+j,εt+j)),

where dt ∈D={0,1} is the control variable, xt ∈X are state variables observed by the
econometrician, εt = (εt0,εt1)∈R

2 are state variables unobserved by the econometrician, β is
the time discount factor, and u(xt,dt,εt) is the per-period payoff. The state variables evolve
according to a controlled first-order Markov process. Under mild regularity conditions (see
Bhattacharya and Majumdar, 1989) that are satisfied under the assumptions we make below,
the optimal lifetime utility of the agent has a recursive representation:

V (xt,εt)=max
dt∈D

[u(xt,dt,εt)+βE{V (xt+1,εt+1)|xt,εt,dt}]. (2.1)

Hereafter we make the following assumptions.

Assumption 1. The state space for the observed states is finite and denoted by X ={1,...,K}.

Assumption 2. The per-period payoff is u(xt = i,dt = j,εt)=uji +εtj; εtj is integrable and
E(εtj|x)=0 for any x∈X and j∈D.

Assumption 3. Pr(xt+1 = i|xt =k,εt,dt = j)=Gj
ki is independent of εt . The distribution of εt+1

given (xt+1,xt,εt,dt) depends only on xt+1 and is denoted by H(·|·).

Assumption 4. The distribution of εt0 −εt1 given xt =x is denoted by F(·|x) and has a positive
density on R

1 with respect to (w.r.t.) the Lebesgue measure for any x in X.
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Assumptions 1–4 are standard in the literature. Assumption 3 of conditional independence
is, perhaps, the strongest one. However, it seems hard to avoid. First, it is a sufficient condition
for non-degeneracy of the model (see Rust, 1994). Second, without Assumption 3 it is not clear
whether the expected value functions are differentiable with respect to parameters (Norets, 2010).
Finally, the assumption is also very convenient for computationally feasible classical (Rust,
1994; Hotz and Miller, 1993) and Bayesian (Norets, 2009) estimation of parametrically specified
models.

Except for Section 5.2, the discount factor β is assumed to be fixed and known in what follows.
This is a common assumption in the literature on estimation of dynamic discrete choice models
and also dynamic stochastic general equilibrium models. The values of β can be taken from
macroeconomic calibration literature (Kydland and Prescott, 1982) or studies estimating time
discount rates from experimental data (see Section 6 in Frederick et al. (2002) for an extensive
list of references).

In what follows, it is convenient to use the following notation. Gj =[Gj
ki] denotes the Markov

transition matrix for the observed states conditional on dt = j and G= (G1,G0).Avector of stacked
deterministic parts of the per-period payoffs with dt = j is denoted by uj = (uj1,...,ujK )′ and
u= (u1,u0). A vector of CCPs is defined by p= (p1,...,pK )′, pi =Pr(dt =1|xt = i), i=1,...,K .

2.2. Identification under known distributions of unobserved states

Following existing literature on semi- and non-parametric identification (Roehrig, 1988 and
Matzkin, 2007 among others), we refer to parameters (u,G,β,F) as a (model) structure.1

According to the model, transition probabilities G and CCPs p completely determine the
distribution of observables. They can be consistently estimated from data and, thus, (p,G) are
assumed to be known in the analysis of identification. In what follows, we assume that the model
is correctly specified.

In this subsection, we assume that (β,F) are known to the econometrician. The main results
of this subsection include a convenient characterization of the relationship between structure
(u,G,β,F) and CCPs p in Lemma 1 and the following implications of Lemma 1 for identification:
(i) Corollary 3 shows that exogenous variation in transitions for the observed states can lead to
non-parametric point identification of the per-period payoffs under a known F; (ii) Lemma 2
shows that normalizations on per-period payoffs can lead to incorrect counterfactual predictions.
Readers who are only interested in semiparametric inference for the counterfactual CCPs with
unknown F may skip the identification results after Lemma 1 and proceed to Section 2.2.2, which
defines the framework and notation for the inference for counterfactual CCPs.

Under Assumptions 1–3, the Bellman equation (2.1) can be rewritten in vector notation as
follows:

v0 =u0 +βG0
∫

max{v0 +ε0,v1 +ε1}dH(ε|X) (2.2)

v1 =u1 +βG1
∫

max{v0 +ε0,v1 +ε1}dH(ε|X),

where vj = (vj1,...,vjK )′ is a vector of stacked deterministic parts of the alternative specific lifetime
utilities vji =uji +βE{V (xt+1,εt+1)|xt = i,dt = j}. We also adopt a Matlab-like convention to sim-
plify notation: for scalar εj and vector vj, vj +εj = (vj1 +εj,...,vjK +εj)′; for a function/expression

1. As we show below, under Assumptions 2–3, the distribution of unobserved states affects CCPs only through
the distribution of the difference in utility shocks, F.
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f (x) mapping from X to R
1, we use f (x1,...,xK ) as the short-hand notation for (f (x1),...,f (xK ))′,

which is a mapping into R
K . In this notation,

∫
max{v0 +ε0,v1 +ε1}dH(ε|X)=

⎛
⎝

∫
max{v01 +ε0,v11 +ε1}dH(ε|x=1)

···∫
max{v0K +ε0,v1K +ε1}dH(ε|x=K)

⎞
⎠.

Let us rewrite the Bellman equations (2.2) in a form convenient for analysing identification,

v0 =u0 +βG0[v0 +
∫

max{0,v1 −v0 −(ε0 −ε1)}dH(ε|X)] (2.3)

v1 =u1 +βG1[v1 +
∫

max{0,ε0 −ε1 −(v1 −v0)}dH(ε|X)],

where we used E(εj|x)=0 for any x∈X and j∈D. Let �ε=ε0 −ε1; then, (2.3) implies

v1 −v0 = (I −βG1)−1[u1 +βG1
∫ ∞

v1−v0

(s−(v1 −v0))}dF(s|X)] (2.4)

−(I −βG0)−1[u0 +βG0
∫ v1−v0

−∞
(v1 −v0 −s)}dF(s|X)].

Since dt =1 at xt = i when v1i −v0i ≥�εi, we have p= (p1,...,pK )′ =F(v1 −v0|X). In the
following lemma, we give necessary and sufficient conditions for some p to be the CCPs for
a given model structure.

Lemma 1. A vector p is a vector of CCPs implied by structure (u,G,β,F) if and only if

F−1(p|X)= (I −βG1)−1
[

u1 +βG1[∫ ∞

F−1(p|X)
sdF(s|X)−(I −diag(p))F−1(p|X)

]]

−(I −βG0)−1
[

u0 +βG0[∫ ∞

F−1(p|X)
sdF(s|X)+diag(p)F−1(p|X)

]]
. (2.5)

The necessity follows immediately from (2.4) by substituting in v1 −v0 =F−1(p|X) and the
zero expectation for �ε given X. The proof of sufficiency is given in Appendix C. The system
of equations (2.5) is convenient for analysing identification and developing inference procedures
for two reasons. First, it is linear in the per-period payoffs u. Second, it involves only conditional
choice probabilities p and structural parameters (u,G,β,F), but not other non-primitive objects
such as optimal continuation values. A result similar to Lemma 1 can also be established for a
finite-horizon model.

To our knowledge, Magnac and Thesmar (2002) were the first to provide a formal analysis
of identification in the model we consider here.2 They used related but different system of
equations. Their system involves optimal continuation values, and thus, the links between
the CCPs and structural parameters are not explicit in their characterizations. Their positive
identification results were about certain differences in future value functions and not about
parameters in per-period payoffs. Aguirregabiria (2005) derived a system similar to (2.5) as

2. Rust (1994) discusses lack of point identification in a simplified model without unobserved states.
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necessary conditions for a vector p to be the CCPs in single-agent models. He used it to
identify choice probabilities under counterfactual changes in u when F is assumed to be
known. Aguirregabiria (2010) derived a related representation for the finite-horizon case. A
result equivalent to Lemma 1 can also be obtained as a special case of the results derived
in Aguirregabiria and Mira (2007) and Pesendorfer and Schmidt-Dengler (2008) for dynamic
discrete choice games. Heckman and Navarro (2007) analysed identification while assuming that
an outcome variable in each period is observable. Kasahara and Shimotsu (2009) studied a model
in which a choice probability is a finite mixture of unobservable component CCPs, which are
also conditional on unobserved heterogeneity. Hu and Shum (2012) studied the identification of
a dynamic discrete choice model in which observed states and unobserved heterogeneity contain
a lot of information about each other. Both of these papers showed how to identify both the
CCPs conditional on unobserved heterogeneity and the mixture probabilities, but did not analyse
identification of the per-period payoffs.

The following remarks, lemmas, and corollaries summarize the implications of Lemma 1 for
identification when F is known (p, G, and β are also considered to be known and fixed).

Remark 1. Because the number of equations in (2.5), K, is smaller than the number of
unknowns, 2K, u cannot be jointly identified without further restrictions. This was first noted
by Magnac and Thesmar (2002). In comparison, here we note that (2.5) identifies the difference
between the discounted total expected payoffs from two trivial policies of clinging to one of the
two actions forever: (I −βG1)−1u1 −(I −βG0)−1u0 (note (I −βGj)−1 = I +∑∞

t=1(βGj)t ). In the
static case, β =0, this is reduced to the identification of u1 −u0.

Even though per-period payoffs are not point-identified, the linear system in (2.5) defines the
identified set for u, which is a lower dimensional subset of R

2K . Economic theory often provides
shape restrictions on u such as linearity, monotonicity, or concavity. Let us denote the set of
feasible values of u by U. Any shape restriction obviously reduces the identified set for u. The
following corollaries to Lemma 1 demonstrate how shape restrictions can lead to set and point
identification.

Corollary 1. Suppose per-period payoffs satisfy shape restrictions given by strict inequalities
(such as strict monotonicity or concavity). Then payoffs are not point-identified.

Corollary 2. Suppose per-period payoffs are linear in parameters, U ={u : uj =Zjθ for j=0,1},
where Zj is a known K ×d matrix and d is the dimension of θ . Then, θ is point- (over-)identified
if the rank of (I −βG1)−1Z1 −(I −βG0)−1Z0 is equal to (strictly greater than) d.

The corollaries follow immediately from Lemma 1.

2.2.1. Exogenous variation in the transition probabilities of the observed states. In
this subsection, we consider an alternative way to point identify per-period payoffs when they are
specified non-parametrically. Suppose there are N ≥2 observed types of decision-makers in the
data (indexed by n=1,2,...,N respectively), for whom the observed state transition probabilities
are different but the per-period payoffs are identical. Denote these transition probabilities by Gj,n

for j=1,0 and n=1,...,N .
There are lots of applications where this condition can be satisfied. For example, in models

of retirement decisions, transition of income will differ for private and public pension plans.
Thus, we have two types of agents: those with private pensions and those with public ones. The
condition holds if people with different pension plans have the same preference for income and
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leisure. Another example is health care utilization decisions such as women’s decision to take
mammography. The medical history of patient’s parents affects her probability of developing
breast cancer, but is likely not to affect per-period payoffs, see Fang and Wang (2008).

With F known, the CCPs for all N types (denoted by p1,p2,...,pN respectively) are now
characterized by a system of 2K unknowns in u and NK equations. Hence, non-parametric
identification of per-period payoffs is possible up to an appropriate normalization, provided
there is sufficient rank in the coefficient matrix for u. This is formalized in the following corollary
proved in Appendix C.

Corollary 3. Suppose there are N types of decision-makers with different observed state
transition probabilities but the same per-period payoffs. (i) For any N ≥2 and any CCPs
(p1,p2,...,pN ), u is identified up to 2K −r normalizations, where r is the rank of the NK-by-2K
matrix:

r =rank

⎡
⎢⎣

(I −βG1,1)−1, −(I −βG0,1)−1

...

(I −βG1,N )−1, −(I −βG0,N )−1

⎤
⎥⎦. (2.6)

(ii) When N =2, r defined in part (i) is equal to

r =rank

[
I −βG1,1, I −βG1,2

I −βG0,1, I −βG0,2

]
and (2.7)

r =K +rank
[
(I −βG1,1)(I −βG0,1)−1 −(I −βG1,2)(I −βG0,2)−1

]
. (2.8)

(iii) When N =2 and G0,1 =G0,2, r =K +rank
[
G1,1 −G1,2] .

For point-identification of the per-period payoffs (up to a location normalization), we need
the highest possible rank in Corollary 3,r =2K −1. Parts (ii) and (iii) of the corollary provide
easy-to-interpret sufficient conditions for when point-identification does and does not hold. It can
be seen from part (ii) of the corollary that if one generates Gi,j independently from continuous
distributions then r =2K −1 with probability 1. At the same time, part (iii) of the corollary
illustrates that when only few elements of the transition matrices change exogenously then point
identification of the per-period payoffs might fail. Specifically, when G0 and at least two rows
of G1 do not change exogenously then the rank of G1,1 −G1,2 is at most K −2 and, thus, by part
(iii) r is at most 2K −2.

Some earlier papers have used weaker forms of exclusion restrictions to identify various
features of DBCMs. Magnac and Thesmar (2002) show that exclusion restrictions can help
identify the difference between current value functions defined as the sum of current static payoffs
and future value functions. They show that if there exists a pair of states that yield the same current
value functions, then current value functions can be identified for all states with knowledge of the
unobserved states distribution. Fang and Wang (2008) use a related but different assumption of
exclusion restrictions in which there exists a pair of observable states under which the per-period
payoffs are the same while transition probabilities to future states are different. This helps identify
per-period payoffs in DBCMs with hyperbolic discounting in which one of the actions yields per-
period payoffs that are independent from the observed states. In comparison, the assumption
of exogenous variation in observed state transition probabilities in the present article is slightly
more restrictive but leads to completely non-parametric identification of u under a known F. In
addition, our results also provide a transparent relationship between the number of normalizations
required for identification of u and easily verifiable rank conditions on observed state transitions.
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2.2.2. Identification of counterfactuals. Structural models are useful in the analysis of
counterfactual changes in structural parameters. Lemma 1 can be used to set up a framework
for analysing identification of the counterfactual CCPs. Suppose we are interested in the CCPs
when the per-period payoffs and the observed state transition probabilities are changed to some
counterfactual values.

We consider counterfactual experiments described by a pair (Ũ,G̃), where counterfactual
transition probabilities for observed states G̃= (G̃0,G̃1) are fixed to some known values and
correspondence Ũ :U →R

2K defines a set of permissible values of counterfactual payoffs ũ
given actual payoffs u. For example, when the per-period payoff of choosing alternative 0 is
unchanged by the counterfactual and the per-period payoff of choosing alternative 1 goes up by
10% for all observed states, Ũ(u)={ũ : ũ0 =u0, ũ1 =1.1·u1}. We do not consider counterfactual
experiments that change β or F.

Analysis of counterfactuals is routinely performed in applications. Consider the following
examples of counterfactual changes in u: changes in unemployment insurance benefits in a job
search model; changes in entry costs resulting from changes in local taxes in firms’ entry/exit
model; and changes in new engine prices in bus engine replacement model (Rust, 1987). Examples
of counterfactual changes in G also abound: changes in social security pension rules in a model
of retirement decisions (Rust and Phelan, 1997; Aguirregabiria, 2010); changes in bus routes
and, thus, mileage transitions in the engine replacement example; changes in the evolution
of determinants of the demand in entry/exit models (Collard-Wexler, 2013); and changes to
bankruptcy laws in mortgage default models.

The identified set of the counterfactual CCPs consists of all p̃ implied by structure (ũ,G̃,β,F),
where ũ∈ Ũ(u) with u∈U and structure (u,G,β,F) implies the CCPs p in the DGP.

Remark 2. Even if u is not point identified, the identified set of counterfactual CCPs
can be a proper subset of (0,1)K . For example, consider a special case of counterfactual
analysis, in which Ũ(u)={u} but the observed state transition probabilities are changed
from G to G̃. Suppose the set of feasible per-period payoffs U is compact and cdf F(·|x) is
continuous for any x∈X, which implies uniform continuity of p as a function of (u,G) (the
continuity follows by standard arguments, see, for example, Norets (2010); the uniformity
follows by the compactness assumption). Then, given any εp >0 there exists εG >0 such that
whenever ||G̃−G||≤εG, any p̃ with ||p̃−p||>εp is not in the identified set, where ||·|| is a
Euclidean norm. This follows immediately from the uniform continuity of p as a function of
(u,G).

Of course, any additional shape restrictions in U will reduce the identified set of the
counterfactual CCPs. Also, as we discuss in the previous subsection, the per-period payoffs, and
thus the counterfactual CCPs, can be point identified under exogenous variation in the transition
probabilities of the observed states.

Lemma 1 implies that the per-period payoffs are not identified. For this reason, one might think
that setting u0 equal to any vector of constants c (e.g. c=0∈R

K ) is a necessary normalization
for identifying u1 non-parametrically. However, such an assignment of u0 is not “innocuous” in
that it can lead to errors in predicting the CCPs under counterfactual transition probabilities of
the observed states. The next two lemmas give conditions under which normalizing u0 affects
and does not affect the predicted counterfactual outcomes.

Lemma 2. Consider a counterfactual experiment where G is changed to G̃ and per-period
payoffs are unchanged. Denote the true u0 in the DGP by u∗

0. Suppose researchers set u0 to
some c∈R

K in order to estimate u1. Then the predicted p̃ based on u0 =c differs from the true
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counterfactual CCPs based on u0 =u∗
0 unless

[
(I −βG1)(I −βG0)−1 −(I −βG̃1)(I −βG̃0)−1

]
(c−u∗

0)=0. (2.9)

Lemma 2 suggests that setting u0 to an arbitrary constant in general affects the predicted
counterfactual outcome. To see this, suppose the rank of the matrix in (2.9) multiplying (c−u∗

0)
is equal to the largest possible value K −1. Corollary 3 with N =2, G0,2 = G̃0, and G1,2 = G̃1

provides easy-to-understand sufficient conditions for the rank condition to hold as the matrices in
(2.8) and (2.9) have the same form. Under this rank condition, (2.9) holds if and only if c−u∗

0 =
const·(1,1,...,1)′. Hence, setting u0 to be a vector with equal coordinates (such as the zero vector)
when the actual u∗

0 is not independent from observed states (i.e. u∗
0 	=const·(1,1,...,1)′) leads to

incorrect counterfactual predictions.
On the other hand, the following lemma shows that setting u0 to an arbitrary vector can

serve as an innocuous normalization if the goal is to predict counterfactual outcomes under linear
changes in the per-period payoffs.

Lemma 3. Consider a counterfactual experiment G̃=G and Ũ(u)={ũ= αu+(�1,�0)}, where
�k’s are known K-vectors and α is a known scalar. Setting u0 to an arbitrary vector does not
affect the predicted counterfactual CCPs.

To our knowledge, Lemmas 2 and 3 present the first formal discussion in the literature about
the impact of normalizations of per-period payoffs on various types of counterfactual analyses.
Proofs of these lemmas are included in Appendix C.

2.3. Identification under unknown distributions of unobserved states

In this subsection, we assume that the distribution of unobserved states is unknown to the
econometrician. The main results of this subsection include a convenient characterization of
the relationship between (u,G,β) and p when the distribution of unobserved states is unknown
(Theorem 1) and the following implications of Theorem 1 for identification: Corollaries 4 and
5 show that the identified sets for per-period payoffs and counterfactual CCPs can be explored
with the help of linear programming algorithms as long as the shape restrictions on per-period
payoffs are defined by linear equalities and inequalities.

Hereafter, we maintain the following assumption.

Assumption 5. The distribution of �ε is independent from x: F(·|x)=F(·).3

Equations in (2.5) suggest that the CCPs depend on F only through a finite number of quantiles
F−1(pk) and corresponding integrals

∫ +∞
F−1(pk)sdF(s). Lemma 4 below characterizes the relations

between such quantiles and corresponding truncated integrals for a generic F. Theorem 1 then
combines Lemma 4 with Lemma 1 to characterize the CCPs when F is not known.

Lemma 4. Given any positive integer L and a triple of L-vectors p, δ, and e, where components of
p are labelled so that 1>p1 >p2 >...>pL >0 without loss of generality, there exists a distribution

3. A characterization of the CCPs without this assumption can be obtained by arguments similar to those we
employ in Lemma 4 below. However, such a characterization seems to be too weak to be useful in empirical work.
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F such that

F has a density f >0 on R w.r.t. the Lebesgue measure, (2.10)∫
sdF(s)=0 (2.11)

F−1(pi)=δi, i∈{1,...,L} (2.12)

ei =
∫ ∞

δi

sdF(s), i∈{1,...,L} (2.13)

if and only if

e1

1−p1
>δ1 > ··· (2.14)

···>δi >
ei+1 −ei

pi −pi+1
>δi+1 > ··· (2.15)

···>δL >− eL

pL
. (2.16)

Conditions in the lemma are easy to understand geometrically. For example, condition (2.15)
simply requires the expectation of �ε conditional on �ε∈ (δi+1,δi) to be in (δi+1,δi),

∫ δi
δi+1

sdF

F(δi)−F(δi+1)
∈ (δi+1,δi).

The lemma is proved in Appendix C. The following theorem follows immediately from Lemmas
1 and 4.

Theorem 1. For a given triple (u,G,β), a vector p in (0,1)K is the CCPs implied by structure
(u,G,β,F) for some F satisfying (2.10)–(2.11) if and only if there exist e in R

K and δ in R
K such

that: (i)

δ= (I −βG1)−1
[

u1 +βG1[e−(I −diag(p))δ
]]

(2.17)

−(I −βG0)−1
[

u0 +βG0[e+diag(p)δ
]];

(ii) After relabelling the K coordinates in p and their corresponding coordinates in δ and e so that
1>p1 ≥p2 ≥···≥pK >0, the unique (strictly ordered) components in p and their corresponding
coordinates in δ and e satisfy (2.14)–(2.16), and ei =ej, δi =δj whenever pi =pj.

For example, suppose K =6, p= (p1,p2,...,p6)= ( 1
3 , 2

5 , 3
4 , 1

3 , 1
10 , 2

5 ), and let δ= (δ1,δ2,...,δ6)
and e= (e1,e2,...,e6). Then the restrictions in (ii) of Theorem 1 are summarized as: δ1 =δ4, δ2 =
δ6, e1 =e4, e2 =e6, and

e3

1−p3
>δ3 >

e2 −e3

p3 −p2
>δ2 >

e1 −e2

p2 −p1
>δ1 >

e5 −e1

p1 −p5
>δ5 >− e5

p5
.
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When F is unknown, (2.17) implies that the scale of F can be normalized without a loss of
generality as long as U is a linear cone, which we assume hereafter. Let δm =F−1(pm) denote
the unrestricted median of F. A convenient normalization is to fix the value of

em =
∫ ∞

F−1(pm)
sdF(s)= log(2), where pm =0.5, (2.18)

as in the logistic distribution (the location of F is normalized in Assumption 2 and equation
(2.11)).

2.3.1. Identified set for per-period payoffs. By definition, the identified set for per-
period payoffs under an unknown F consists of all u in U such that for some F satisfying
(2.10)–(2.11) and a scale normalization, structure (u,G,β,F) implies the CCPs p in the DGP. The
following corollary to Theorem 1 provides a computationally convenient characterization of the
identified set of per-period payoffs.

Corollary 4. (i) For a given pair (p,G), the identified set of per-period payoffs, U(p,G), consists
of all u in U for which there exists (δ,e,δm)∈R

2K+1 satisfying the following conditions. (a)
(u,G,β,δ,e,p) satisfy (2.17). (b) Let (pm,em) be defined as in (2.18). Define K +1-vectors p∗ =
(p∗

1,...,p∗
K+1)′, e∗, and δ∗ by stacking (pm,p), (e,em), and (δ,δm) respectively and relabelling the

coordinates so that 1>p∗
1 ≥p∗

2 ≥···≥p∗
K+1 >0. Then, the unique (strictly ordered) coordinates in

p∗ and the corresponding coordinates in δ∗ and e∗ satisfy (2.14)–(2.16), and e∗
i =e∗

j and δ∗
i =δ∗

j
whenever p∗

i =p∗
j .

(ii) If U is convex then U(p,G) is also convex.

The dependence of the identified set U(p,G) on the time discount factor β and restrictions on
the per-period payoffs U is suppressed in the notation for simplicity.

The scale normalization employed in the corollary, which is described in the previous
subsection, is convenient for computing the identified sets as it implies the linearity of the
equalities and inequalities in the unknowns. A linear programming algorithm can be used to
verify whether a given vector of per-period payoffs is in U(p,G).

If the per-period payoffs are parameterized then an approximation to the identified set of the
parameters can be computed on a grid: for each point in the grid, we can check if the corresponding
per-period payoffs are in U(p,G). If the restrictions on uj are linear (U ={u :uj =Zjθ}), then a
more efficient algorithm described in Section 4.2 and Appendix B.3 can be used to compute
the identified set. These strategies are computationally feasible when the dimension of θ is not
high. Even when the dimension of θ is high it is feasible to compute the identified sets for
lower-dimensional sub-vectors of θ under linear uj as we describe at the end of Appendix B.3.

The definition of the identified set in Corollary 4 assumes a known time discount factor. It
is possible to include β in the vectors of parameters to be identified. We give an example of the
joint identified set for β and payoff parameters in our application (Section 5.2).

2.3.2. Identified set for counterfactual CCPs. The notation and examples of counter-
factual changes in primitives (u,G) are described in Section 2.2.2. When F is unknown to the
econometrician, the identified set of the CCPs under counterfactual experiment (Ũ,G̃) consists of
all p̃ implied by any structure (ũ,G̃,β,F), in which F satisfies (2.10)–(2.11), ũ∈ Ũ(u) with u∈U,
and structure (u,G,β,F) implies the CCPs p in the DGP. It is important to note that unknown F is
assumed to be unchanged by the counterfactual. The following corollary to Theorem 1 provides
a computationally convenient characterization of the identified set of counterfactual CCPs.



[13:15 10/7/2014 rdt050.tex] RESTUD: The Review of Economic Studies Page: 1241 1229–1262

NORETS & TANG SEMIPARAMETRIC INFERENCE IN DBCMs 1241

Corollary 5. For a given pair (p,G) and a counterfactual experiment (Ũ,G̃), the identified
set for counterfactual CCPs, P(p,G), consists of all p̃ for which there exist u∈U, ũ∈ Ũ(u),
and (δ,e,δ̃,ẽ,δm)∈R

4K+1 such that the following conditions hold. (a) (u,G,β,δ,e,p) and
(ũ,G̃,β,δ̃,ẽ,p̃) satisfy (2.17). (b) Let (pm,em) be as defined in (2.18). Define 2K +1-vectors
p∗ = (p∗

1,...,p∗
2K+1)′, e∗, and δ∗ by stacking (pm,p̃,p), (e,ẽ,em), and (δ,δ̃,δm) respectively

and relabelling the coordinates so that 1>p∗
1 ≥p∗

2 ≥···≥p∗
2K+1 >0. Then, the unique (strictly

ordered) coordinates in p∗ and the corresponding coordinates in δ∗ and e∗ satisfy (2.14)–(2.16),
and e∗

i =e∗
j and δ∗

i =δ∗
j whenever p∗

i =p∗
j .

The dependence of the identified set P(p,G) on the time discount factor β, restrictions on the
per-period payoffs U, and counterfactual (Ũ,G̃) is suppressed in the notation for simplicity. In
the corollary, we use a scale normalization on F defined in (2.18). Note, however, that a scale
normalization does not affect P(p,G).

Given the lack of non-parametric identification for u even under a known F (Remark 1), it is
clear that the shape and/or functional form restrictions, U, play an important role in partially iden-
tifying the counterfactual CCPs under an unknown F. However, as the following lemma demon-
strates even without restrictions on u, the identified set, P(p,G), can be a proper subset of (0,1)K .

Lemma 5. Consider a counterfactual change in u such that (I −βG1)−1(ũ1 −u1)+(I −
βG0)−1(ũ0 −u0) 	=0. Then, P(p,G), is a proper subset of (0,1)K .

Since the characterization of P(p,G) is rather involved it seems hard to determine analytically
what affects the size of this set. Therefore, we suggest using numerical algorithms to learn
about P(p,G). To verify that a candidate vector p̃ belongs to P(p,G), one needs to check the
feasibility of equalities and inequalities described in Corollary 5. This can be done by a linear
programming algorithm described in Appendix B.1 as long as Ũ(u) is defined by linear equalities
and inequalities. As we demonstrate in the application (Section 5.3), this linear programming
algorithm can be combined with MCMC to estimate the identified set.

3. INFERENCE

The identification results from the previous section demonstrate that per-period payoffs, u,
and counterfactual CCPs, p̃, are only partially identified when F is unknown. There is a
growing literature in econometrics on inference for partially identified parameters. See for
example, Manski (2003), Imbens and Manski (2004), Chernozhukov et al. (2007), Rosen (2008),
Stoye (2009), Beresteanu and Molinari (2008), Romano and Shaikh (2010), Andrews and Soares
(2010), Canay (2010), Bugni (2010), and Moon and Schorfheide (2012).

In principle, one can apply a criterion function approach of Chernozhukov et al. (2007) or
related approaches to construct confidence sets for the identified sets of p̃ and parameters of u
(see Appendix E in Norets and Tang (2013) for a description of a criterion function). In our
high-dimensional settings, a criterion function approach seems computationally challenging.
Therefore, it is essential to develop an inference procedure that can handle high-dimensional
problems.

3.1. Bayesian approach

Bayesian inference in partially identified models is conceptually straightforward. In these models,
the likelihood function can be represented as a function of point identified parameters ((p,G) in our
case). Partially identified parameters and structural model restrictions can enter the econometric
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model through the restrictions on the prior distribution for (p,G,p̃). An important advantage
of the Bayesian approach is that Bayesian MCMC methods perform well in high-dimensional
problems. On the other hand, possible dependence of Bayesian estimation results on the prior is
an important issue that needs to be carefully addressed.

Next, we describe data typically used for estimating a DBCM and construct the likelihood
function. We then give a detailed description of our Bayesian procedure. The following subsection
describes the frequentist properties of the procedure.

DBCMs are usually estimated from panel data on individual choices and observed states,
(xi

1,d
i
1,...,x

i
Ti

,di
Ti

), where i is an index for individuals in the sample and Ti is the number
of time periods in which i is observed to make decisions. Given a vector of CCPs, p,
and Markov transition matrices for observed states, G, the distribution of the observables

P
(
{di

1,x
i
2,d

i
2,...,x

i
Ti

,di
Ti

}n
i=1|p,G,{xi

1}n
i=1

)
is given by

p
n1

k
k (1−pk)n0

k ·
K∏

k,l=1

(G1
kl)

ν1
kl (G0

kl)
ν0

kl , (3.19)

where n is the number of individuals in the sample, nj
k is the number of observed decisions di

t = j

at state xi
t =k, ν

j
kl is the number of observed transitions from xi

t =k to xi
t+1 = l given the decision

di
t = j. The distribution of the observables above is conditional on the initial observed states xi

1.
This is appropriate in the Rust (1987) model that we consider in Sections 4–5. An alternative that
might be appropriate in other applications is to assume that the process for (xt,dt) is stationary
and combine (3.19) with the implied stationary distribution for xi

1, which would be a function of
(p,G).

In a standard estimation procedure for DBCMs (Rust, 1994; Keane and Wolpin, 1994),
(u,G,F) are parameterized. After solving for value functions in the model, one can replace
the CCPs p in the likelihood in (3.19) with functions of the parameters. The parameters are then
estimated by the maximum likelihood. Estimates of the counterfactual CCPs are obtained by
solving the model under the counterfactual changes in the estimated parameters.

When F is unknown, there are multiple values of u and p̃ that can be consistent with the
structural model and given values of (p,G). Thus, (p,G,p̃,u) can all be treated as parameters for
estimation. Under this parameterization, the likelihood function is given by (3.19). It depends
only on (p,G). As we described in the identification section, the structural model does restrict
(p,G) (Theorem 1). It also restricts (p̃,u) for given (p,G) (Corollaries 4 and 5). It is natural to
incorporate these restrictions into the econometric model via the prior distribution.

First, suppose that the primary interest is in p̃ and u can be treated as a nuisance parameter.
Then one can define a joint prior for (p,G,p̃) as a distribution truncated to {(p,G,p̃) : p̃∈P(p,G)},
where P(p,G) is the identified set for p̃ defined in Corollary 5. The posterior distribution of
(p,G,p̃) is proportional to the product of this prior and the likelihood in (3.19). In this case, we
can treat (u,δ,e) as nuisance parameters. The prior for them is not specified and (u,δ,e) appear
only implicitly in verification that p̃∈P(p,G). This reduces the dimension of the problem and
considerably simplifies specification of the prior and construction of the MCMC algorithm for
exploring the posterior distribution. Properties that researchers would like to impose on u a priori
can be included in this approach through the shape or parametric restrictions U. Similarly, certain
restrictions on F can also be incorporated (see Section 4.6).

If the primary interest is in u and no counterfactual experiments are considered then the
approach of the previous paragraph can be modified (a prior for (p,G,u) is truncated to {(p,G,u) :
u∈U(p,G)}, where U(p,G) is the identified set for u defined in Corollary 4). Alternatively, one
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can consider the posterior distribution of (p,G) only. The prior for (p,G) can be truncated to the
restrictions described in Theorem 1 and u can be treated as a nuisance parameter in the estimation
of (p,G) (u only shows up implicitly in the verification of the linear restrictions in Theorem 1).
Then, credible and confidence sets for U(p,G) or P(p,G) can be constructed after estimation of
(p,G). We implement the latter approach in our application (Section 5.5) as it does not require
developing an additional MCMC algorithm for exploring the posterior of (p,G,u).

Specifying an uninformative prior for (p,G,p̃) (or (p,G,u) or (p,G)) is not trivial because
the support of the prior can be rather complicated. For example, a uniform prior for (p,G,p̃)
truncated to {(p,G,p̃) : p̃∈P(p,G)} can be very informative as we demonstrate in Section 4.3.
Flexible hierarchical priors, which allow for a priori dependence in components of (p,G,p̃), seem
to provide a general solution to this problem. In Section 4, we provide further motivation and
details for the prior specification and implementation of the MCMC algorithm in the context of
Rust’s model.

3.2. Frequentist inference based on MCMC output

In this subsection, we describe frequentist properties of the Bayesian estimation procedure
described in the previous subsection. We also present ways to use Bayesian estimation output for
construction of classical confidence sets.

To be specific let us consider estimation of (p,G,p̃). Let us assume that the prior density
is positive and continuous in an open neighbourhood of the data-generating values of (p,G).
By the Bernstein-von Mises theorem (see, for example, Chapter 10 in van der Vaart (1998)),
Bayesian credible sets for point-identified parameters (p,G) are asymptotically equivalent to the
corresponding confidence sets based on the maximum likelihood estimator (MLE) for (p,G),
which is a simple frequency estimator under discrete X.

For partially identified parameters the Bernstein-von Mises theorem does not hold.
Moon and Schorfheide (2012) show that credible sets for partially identified parameters are
strictly smaller than the corresponding confidence sets asymptotically. Their results apply to our
settings. To understand these results suppose that the prior of p̃ conditional on (p,G) is a uniform
distribution on P(p,G). As the sample size increases, the posterior for (p,G) concentrates around
the DGP values and the posterior for p̃ converges to the uniform distribution on the identified set
for p̃. Thus, a Bayesian credible set for p̃ excludes about 5% of the volume of the identified set.
In contrast, a 95% classical confidence set for p̃ typically includes the identified set.

The conceptual differences between classical and Bayesian inference for partially identified
parameters can also be described as follows. Bayesian inference does not distinguish between
the uncertainty from the lack of point identification and that from the sampling variability. In
contrast, a standard classical 95% confidence set allows for errors in 5% of hypothetical repeated
samples; however, the lower bound on the coverage rate is imposed at all parameter values in the
parameter space.

Classical and Bayesian approaches can be reconciled if the identified set is the object of
interest. In this case, the posterior for the identified parameters (p,G) implies the posterior
distribution for P(p,G) on a space of sets. Let us denote a 100(1−α)% Bayesian credible set for
(p,G) by Bp,G

1−α
. Then,

BP
1−α =

⋃
(p′,G′)∈Bp,G

1−α

P(p′,G′) (3.20)

is a 100(1−α)% credible set for P(p,G). In settings with multiple prior distributions for
partially identified parameters considered in Kitagawa (2011), sets in (3.20) have posterior lower
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probability at least 1−α (Appendix E.2 in Norets and Tang (2013) provides more details on
Kitagawa (2011)’s approach).

If Bp,G
1−α

has 100(1−α)% frequentist coverage then the set in (3.20) also has 100(1−α)%
frequentist coverage. One could go further and consider confidence sets of the form

CP
1−α =

⋃
(p′,G′)∈Cp,G

1−α

P(p′,G′), (3.21)

where Cp,G
1−α

is a 100(1−α)% frequentist confidence set for (p,G). In a search of confidence sets
for P(p,G) that satisfy any reasonable optimality criterion such as smallest weighted expected
volume, one can restrict attention to sets satisfying (3.21) because any confidence set for the
identified set can be represented as a superset of (3.21) (Lemma C9 in Appendix C).

In our application, we use approximations to the highest posterior density credible sets as
Bp,G

1−α
(and Cp,G

1−α
, which is justified by the Bernstein-von Mises theorem). This could lead to

conservative confidence sets. However, the problem of finding Cp,G
1−α

so that CP
1−α

in (3.21)
satisfies some optimality properties seems to be hard to solve analytically or numerically in
our high-dimensional settings. Most of the literature on confidence sets for partially identified
parameters also does not consider optimality properties.4 Thus we leave this issue to future
research.

Approximations to sets in (3.21) (or (3.20)) for any particular Cp,G
1−α

(or Bp,G
1−α

) can be
easily obtained from MCMC estimation output, (pt,Gt,p̃t,t =1,2,...), of the Bayesian approach
described in the previous subsection. Specifically, sets in (3.21) (or (3.20)) can be estimated by
the the support of {p̃t : (pt,Gt)∈Cp,G

1−α
} (or {p̃t : (pt,Gt)∈Bp,G

1−α
}). Thus, the Bayesian approach

described in the previous subsection can be used for implementing frequentist inference on
P(p,G) and, in a similar fashion, on U(p,G).

For applied work, we recommend reporting the whole posterior distributions for p̃ since they
are more informative than credible sets. They also have a decision theoretic justification. As we
demonstrate in Sections 4–5, posterior distributions can be compared with prior distributions and
estimates of the identified sets to evaluate the extent of uncertainty from the set identification,
the prior shape, and the sampling variation.

4. APPLICATION: METHODOLOGY

We illustrate our methodology using Rust (1987) model of bus engine replacement. First, we
describe the model. Second, we discuss how to construct the identified sets for the per-period
payoff parameters. Third, we discuss the prior specification and the MCMC algorithm. Fourth, we
show how additional restrictions of F can be incorporated in our framework. Section 5 presents
the results for simulated and real data.

4.1. Rust (1987) model of optimal bus engine replacement

Rust (1987) model of optimal bus engine replacement is a standard example in the literature.
Several papers used it for testing new methodologies for estimation of dynamic discrete choice
models (see Aguirregabiria and Mira, 2002; Bajari et al., 2007; and Norets, 2009).

4. One exception to this is Chiburis (2009) who considers optimality in testing moment inequality models.
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In the model, a transportation company manager decides in each time period t whether to
replace (dt =1) or maintain (dt =0) the engines of each bus in the company’s fleet. The observed
state variable is the cumulative mileage of a bus engine at time t (denoted by xt) since the
last engine replacement. Some additional factors that can affect the replacement or maintenance
costs, denoted by εt = (εt0,εt1), are observed by the manager but not the econometrician. The
mileage is discretized into K =90 intervals X ={1,...,K}. The costs of engine replacement and
maintenance at time t are given respectively by u(xt =k,dt =1,εt)=u1k +εt1 and u(xt =k,dt =
0,εt)=u0k +εt0. u1k is constant across k and it captures the deterministic one-time replacement
costs; u0k is the deterministic maintenance cost for an engine in mileage interval k. For the rest of
the section, we normalize u1k to 0 for all k. For xt ≤88, the change in mileage (xt+1 −xt) follows
a multinomial distribution on {0,1,2} with parameters π = (π0,π1,π2). For xt equal to 89 and
90, the multinomial distributions are respectively given by (π0,1−π0,0) and (1,0,0). Buses are
assumed to start with a new engine, so the likelihood can be conditional on x1 =1 for new buses.
The Markov transition matrices for xt , G, can be easily constructed from π .

Rust (1987) assumes an extreme value distribution for εt0 and εt1 and exploits this assumption
to estimate parameters in u0. In comparison, we do not rely on assumptions about the parametric
form of the distribution of εt . We assume only that εt is independent of xt .

It is computationally convenient to define the set of feasible per-period payoffs U by a linear
system of equations or inequalities. This can accommodate all parametric cases considered in
Rust (1987) where cost functions are linear in the unknown parameters. To fix ideas, we adopt a
simple linear index specification: U ={u : u1k =0 and u0k =θ0 +θ1k, for some θ1 <0,θ0 ∈R

1}. If
F were known to econometricians, θ0 and θ1 would be over-identified by Corollary 2 in Section
2. Since U is defined by a linear system of equations, whether p̃∈P(p,π ) can be verified by
checking the feasibility of a system of linear equalities and inequalities (see a characterization
of P(p,π ) in Corollary 5). A linear programming algorithm for checking the feasibility of the
system is described in Appendix B.1.

The counterfactual experiments we consider involve changes only in transition probabilities
for the observed state, π̃ 	=π , where π̃ is known. The per-period payoffs are left unchanged,
Ũ(u)={u}.

The following properties of the model are useful for developing prior specification and the
MCMC algorithm.

Lemma 6. If θ1 <0, then p= (p1,...,pk,...,pK ) is increasing in k.

Lemma 7. For counterfactual experiments that only change observed state transition
probabilities in π , the CCP given xt =1 does not change: p1 = p̃1.

Lemma 8. Consider the same counterfactual experiment as in Lemma 7. If there are (p,p̃,π )
such that p̃∈P(p,π ) and no two coordinates in (p,p̃2,...,p̃K ) are identical, then for any
(p


2,...,p


K ,p̃


2,...,p̃


K ,π
) sufficiently close to (p2,...,pK ,p̃2,...,p̃K ,π ), p̃
 = (p1,p̃


2,...,p̃


K )∈

P((p1,p

2,...,p



K ),π
).

4.2. Computing identified sets for per-period payoff parameters

We developed two algorithms for computing the identified set for per-period payoff parameters.
The algorithms are based on solving multiple linear programmes. One algorithm exploits the
convexity of the identified set (Corollary 4 (ii)) and the supporting hyperplane theorem, which
implies that the boundary of the set can be fully characterized by supporting hyperplanes. To
explain the idea of the algorithm, let us consider the case where θ ∈R

2. Any point on the boundary
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of a convex set in R
2 is uniquely associated with a tangent line, which is completely characterized

by a slope and an intercept. Thus, the task of recovering a convex set in R
2 amounts to recovering

the set of pairs of slopes and intercepts that define the boundary points. To implement this idea
we define a grid on the slopes. For each slope in the grid, we obtain the intercepts of the two
lines with this slope that are tangent to the identified set. The intercepts are obtained by solving a
linear programme. Appendix B.3 formally describes the algorithm. The appendix also describes
the other algorithm, which performs a grid search in the original parameter space.

Note that if the researcher is interested in a lower-dimensional sub-vector of θ , then the
grid search over the slopes or the original parameter space needs to be performed only over the
lower-dimensional part of the parameter space.5

4.3. Prior

Specification of an uninformative prior for (p,p̃,π ) requires some care. First of all, such a prior
must give probability 1 to {(p,p̃,π ) : p̃∈P(p,π )}. Furthermore, by Lemma 7 the prior must imply
p1 = p̃1. Thus, from now on we exclude the first coordinate from p̃ (it is implicitly given by p1).
Lemma 8 suggests that it is reasonable to construct the prior for (p,p̃,π ) by specifying a density
with respect to the Lebesgue measure on R

2K+1 that is truncated to {(p,p̃,π ) : p̃∈P(p,π )} (the
dimension of π is 2, and the dimension of (p,p̃) is 2K −1 since p1 = p̃1). At first sight, one
might suggest using a product of uniform (or uninformative Beta) densities on (0,1) for each
component of (p,p̃) and a Dirichlet density for π . However, such a specification results in a
strongly informative prior that can dominate the likelihood even for moderate sample sizes. A
short explanation for this is that a priori independence of components of p or p̃ is unreasonable. To
get more insight in the context of Rust’s model note that Lemma 6 implies monotone coordinates
in p and p̃. A uniform distribution for coordinates of p truncated to monotonicity restrictions
p1 <p2 < ···<pK results in the marginal distribution for pK equal to the distribution of the K th

order statistic, which is far from uniform for K =90. This example is not exactly equivalent to
uniform truncated to {(p,p̃,π ) : p̃∈P(p,π )} but it illustrates the problem well.

A general solution to this problem, which is likely to work for other models as well, is
to allow for dependence of coordinates of (p,p̃) in the distribution that is to be truncated
to {(p,p̃,π ) : p̃∈P(p,π )}. Prior dependence in the Bayesian framework can be introduced
through hierarchical modelling (see Sims (2006) for an insightful discussion of an example
where hierarchical modelling solves a somewhat similar problem; for a textbook treatment of
hierarchical models, see Geweke (2005) and Gelman et al. (2003)). To illustrate this idea, suppose
components of p are i.i.d. Beta(ms,(1−m)s) with location and spread parameters (m,s) truncated
to p1 <p2 < ···<pK and (m,s) have a flexible prior distribution. For any fixed (m,s) we would
have the same problem of rather dogmatic marginal distributions for components of p when K
is large. However, when (m,s) can vary, the marginal distributions of components of p can have
considerably larger variances.

To obtain more prior flexibility in conditional prior distributions, we use a finite mixture
of beta distributions truncated to {(p,p̃,π ) : p̃∈P(p,π )} as the prior for (p,p̃). Mixtures of
beta distributions can approximate and consistently estimate large non-parametric classes of
densities; see, for example, Rousseau (2010). Let M denote the number of mixture components,
zk ∈{1,...,M} (and z̃k) denote a latent mixture component allocation variable for pk (and
p̃k), and Pr(zk = j)=αj be the mixing probability for component j. Then, before truncation to

5. We thank the editor for pointing this out.
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{(p,p̃,π ) : p̃∈P(p,π )},

P(pk |zk = j,m,s)=Beta(pk;mjsj,(1−mj)sj)=
�(sj)p

mjsj

k (1−pk)(1−mj)sj

�(m1s1)�((1−m1)s1)
.

Introduction of such allocation variables is standard in MCMC estimation of mixture models;
see Diebolt and Robert (1994). Parameterization of beta distribution in terms of location mj and
spread sj is also convenient for implementation of MCMC estimation algorithms. With this
notation, the prior distribution up to a normalizing constant is given by

P(p,p̃,π,z,z̃,α,m,s)∝ (4.22)∏
k:zk=1

Beta(pk;m1s1,(1−m1)s1) ···
∏

k:zk=M

Beta(pk;mMsM ,(1−mM )sM )

·
∏

k:z̃k=1

Beta(p̃k;m1s1,(1−m1)s1) ···
∏

k:z̃k=M

Beta(p̃k;mMsM ,(1−mM )sM )

·
M∏

j=1

Beta(mj;Nm0,Nm1)·Gamma(sj;γ s0
,γ

s1
)

·
K∏

k=1

αzk ·
K∏

k=2

αz̃k
·

M∏
j=1

α
a−1
j

·πb−1
0 π

b−1
1 (1−π0 −π1)b−1 ·1P(p,π )(p̃),

where values for the hyperparameters Nm0, Nm1, γ
s0

, γ
s1

, a, and b are chosen by the researcher.
A standard Dirichlet prior for π is suitable as π is low dimensional and the data contain a lot of
information about π .

4.4. Overview of MCMC algorithm

The posterior distribution of (p,p̃,π,z,z̃,α,m,s) is proportional to the product of the prior in (4.22)
and the likelihood in (3.19) with Gj

kl replaced by the corresponding elements of π . Its density
can be computed up to a normalizing constant from (3.19) and (4.22). Therefore, a Metropolis-
Hastings MCMC algorithm can in principle be used for exploring the posterior distribution.6 To
achieve good performance in practice, the proposal transition density in a Metropolis-Hastings
algorithm should mimic the posterior distribution. In actual applications, the dimension of p can
be high and constructing good proposal distributions for a Metropolis-Hastings algorithm can
be challenging. In this case, an MCMC algorithm that uses the Gibbs sampler, which updates
only one or a few coordinates of the parameter vector at a time, can be much more effective.7

6. To produce draws from some target distribution, a Metropolis-Hastings MCMC algorithm needs only values of
a kernel of the target density. The draws are simulated from a transition density and they are accepted with probability that
depends on the values of the target density kernel and the transition density. If a new draw is not accepted, the previous
draw is recorded as the current draw from the Markov chain. The sequence of draws from this Markov chain converges
to the target distribution. For more details, see, for example, Chib and Greenberg (1995) or Geweke (2005).

7. The Gibbs sampler divides the parameter vector in blocks and sequentially produces draws from the distribution
of one block conditional on the other blocks and data. For example, to explore P(θ1,θ2) on iteration r the sampler produces
θ

(r)
1 ∼P(θ1|θ (r−1)

2 ) and θ
(r)
2 ∼P(θ2|θ (r)

1 ). The sequence of draws (θ (r)
1 ,θ

(r)
2 ) from this Markov chain converges to P(θ1,θ2).

For more details; see, Tierney (1994) or Geweke (2005).
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Also, different variations of the Metropolis-Hastings algorithm can be used together with the
Gibbs sampler to construct robust hybrid MCMC algorithms, see Tierney (1994). We use these
ideas along with particular properties of the model such as Lemma 6 and Lemma 7 to develop
an MCMC sampler that performs well in the application and has required theoretical properties.
Appendix A provides a detailed description of the algorithm.

The main computational burden of our algorithm is the solution of the linear program for
verification of p̃∈P(p,π ) on every iteration of the MCMC algorithm. The number of constraints
and variables in the linear program increases only linearly in the size of p. Nevertheless, our
semi-parametric estimation algorithm is more computationally intensive than Rust’s algorithm
for parametric models because the MCMC algorithm typically requires more iterations for
convergence than the likelihood maximization in Rust’s algorithm. We report approximate
computing times for identification and estimation exercises in Section 5.

In Norets and Tang (2013), we consider a firm’s entry and exit model and demonstrate that
practical MCMC algorithms can be constructed even if the researcher does not have a priori
information about properties of CCPs implied by the model restrictions such as monotonicity in
Rust’s model proved in Lemma 6. To construct a practical MCMC algorithm for a new model, the
researcher may need to further experiment with MCMC blocks and proposal densities described
in Appendix A and Norets and Tang (2013). The performance of MCMC algorithms depends on
the dimension and complexity of the model and it might be more difficult to handle models that
are more complex than the ones we consider.

4.5. Uses of MCMC algorithm

In addition to exploring the posterior distribution of (p,π,p̃) for Bayesian inference in Section
5.4, we use the MCMC algorithm for two other purposes. First, the confidence sets for θ presented
in Section 5.5 are constructed as follows. Similar to a confidence set for p̃ discussed in Section
3.2, a valid 1−α confidence set for θ can be defined by

Bθ
1−α =

⋃
(p′,π ′)∈Bp,π

1−α

U(p′,π ′), (4.23)

where Bp,π
1−α

is a 1−α confidence set for (p,π ) and U(p,π ) is the identified set for θ defined in

Corollary 4. To construct an asymptotically valid approximation to a confidence set Bp,π
1−α

we use
a 1−α Bayesian credible set. To construct this credible set we estimate mean, μ̂, and variance–
covariance matrix, ̂, of the posterior for (logp,π ) using MCMC draws from the posterior. The
posterior of logp is better approximated by a normal distribution than the posterior of p, especially
for coordinates for which we do not have many observations. Bp,π

1−α
is approximated by posterior

draws satisfying [(logp,π )−μ̂]′−1[(logp,π )−μ̂]≤c, where critical value c is chosen so that
100(1−α)% per cent of posterior draws are in the set. Thus, set Bθ

1−α
has Bayesian and asymptotic

frequentist interpretations. For each posterior draw of (p′,π ′) in Bp,π
1−α

, we compute U(p′,π ′) by
the algorithm described in Section 4.2.

Second, we use the MCMC algorithm for recovering the identified set of counterfactual CCPs
in Section 5.3 (it is impractical to do a grid search to recover this set in a space with dimension
K =90). The MCMC algorithm is the same as the one described in Apppendix A, except that
we keep (p,π ) fixed. The support of the posterior explored by this MCMC is then used as an
approximation of the identified set of counterfactual CCPs.
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4.6. Additional restrictions on F

So far we have taken an agnostic approach to the distribution of the unobserved states. We do
not assume anything about F other than the existence of positive density and independence from
observed states. Nonetheless, in practice, researchers might have some idea about the magnitude
of shocks. It is possible to include researchers’ knowledge about F in the form of restrictions on
the quantiles into our estimation procedure. For example, in experiments we use the following
restrictions,

|δi −F−1
logistic(pi)|<bd ·max{|F−1

logistic(pi)−F−1
normal(pi)|,σlogistic}, (4.24)

where σlogistic is the standard deviation of the logistic distribution and bd is a parameter. Since
the distance between the quantiles of normal and logistic distributions around 0.5 is very small,
the presence of σlogistic in the bound allows for somewhat bigger deviations from the logistic
distribution around 0.5. The parameter bd controls the size of the allowed deviations. Using
logistic and normal quantiles as benchmarks is sensible as most of the applications use these
distributions for unobserved states. Performing estimation and identification exercises with
different values of bd can shed light on sensitivity of results with respect to parametric assumptions
about F. At the same time, any degree of flexibility can be attained by setting appropriate values
for bd. In experiments below we use bd ∈{0.25,1,∞}. To impose these additional restrictions on
F in the model, one can just add inequality (4.24) to inequalities in Theorem 1. More generally,
any linear restrictions on δ can be included in the model in a similar fashion.

5. APPLICATION: RESULTS

In this section, we present the identified sets for payoff parameters, discount factor, and
counterfactual CCPs, estimation results for actual and counterfactual CCPs, and confidence sets
for per period payoff parameter in Rust’s model. Except for Section 5.5, we use simulated data
below. This allows us to compare estimation results with the identified sets corresponding to the
DGP.

To simulate the data, we solve the dynamic programming problem to find the actual CCPs
as described in Rust (1987). We use the following DGP for simulating the data: logistic F,
θ0 =5.0727, θ1 =−0.002293, π0 =0.3919,π1 =0.5953 and the discount factor β =0.999. These
parameter values correspond to Rust’s estimates for group 4 except that we decreased θ0 by 5
and decreased β by 0.0009 in order to increase engine replacement probabilities for low mileage
(without this change simulated data contained no replacement observations for very low x).
Section 5.5 presents the application of the methodology for estimating payoff parameters to
real data.

5.1. Identified sets for per-period payoff parameters

This subsection recovers the population identified set of per-period payoff parameters (θ0,θ1) and
visualizes the identifying power of additional restrictions on F. The three nested sets in Figure 1
correspond to the identified sets of (θ0,θ1) under different quantile restrictions on F as in (4.24)
with bd =∞,1,0.25. The smaller bd is, the closer F is required to be to the logistic distribution.
The largest identified set in Figure 1 corresponds to unrestricted F and includes values of (θ0,θ1)
that differ from the DGP values by five times. The figure shows that stronger restrictions on
quantiles of F considerably reduce the size of the identified set.

Recovering the identified set of u0 without assuming linearity is challenging because it is
impractical to perform a grid search in a 90-dimensional parameter space. However, one can
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Figure 1

Identified sets of cost parameters with bd =∞,1,0.25

guess and verify that the identified set of u0 includes values that are more than three orders of
magnitude larger than the DGP values. To understand this, note that by inequalities (2.14)–(2.16),
the range of quantiles δ consistent with given CCPs p is large if the smallest CCP, p1, is small
and the largest CCP, pK , is large. In our parameterization of the GDP, the smallest CCP, p1, is of
the order 10−4 and thus, according to (2.16), δ1 can reach the order 104. By (2.17), this can lead
to large values in u0.

5.2. Joint identification of time discount factor and per-period payoffs

In this subsection, we relax the assumption that the time discount factor is known and describe the
joint identified set for the payoff parameters and the time discount factor. The DGP is described
in the beginning of Section 5. We define a fine grid for β and run the algorithm for recovering the
identified sets for θ for every value of β in the grid. For all values of β in the grid the identified
set for θ is non-empty. Figure 2 shows identified sets of θ computed for several different values
of β. The figure shows that even without additional restrictions on F, the joint identified set of
(β,θ ) is informative. However, the projection of this identified set on the time discount factor
dimension is (0,1). With additional restrictions on F, the projection of the identified set on the
time discount factor dimension can be a proper subset of (0,1). For example, with F restricted
by bd =0.25 (see Section 4.6), the projection is [0.52,1) or, in other words, the identified set for
θ is empty for β <0.52.

5.3. Identified sets of counterfactual CCPs

In this subsection, we examine the identified set of counterfactual CCPs when the transition
probabilities are changed to π̃0 =0.6 and π̃1 =0.3 and (β,θ0,θ1) are unchanged. Figure 3 presents
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Figure 2

Identified sets of θ for different β (bd =∞)

the marginal “posteriors” for counterfactual CCPs with (p,G) fixed at the DGP values. The
supports of these distributions are the projections of the K-dimensional identified set for the
counterfactual CCPs onto single dimensions corresponding to each coordinate in p̃. Figure 4
depicts these supports for each coordinate k under no additional restrictions on F. As can be seen
from the figure, the projections of the identified set for x≥85 are much larger than the projections
for x<85. From Figure 3, we see that as F is restricted to be increasingly closer to the logistic
distribution, the identified sets for the counterfactual CCPs in most dimensions change little,
even though the identified sets for the per-period payoff parameters presented in Figure 1 are
reduced a lot.

5.4. Estimation of counterfactuals with simulated data

Using parameter values described in the beginning of Section 5, we simulate a data set for 5000
buses. For each bus, we simulate data starting with x=1 until the engine is replaced. The goal
is to estimate the counterfactual CCPs without relying on the distributional assumption about εt0
and εt1 when the transition probabilities are changed to π̃0 =0.6 and π̃1 =0.3 and (β,θ0,θ1) are
unchanged.

We estimate the model for three different numbers of mixture components in the prior,
M =3,6,9. The results are similar and we report them only for M =6. The values for prior
hyperparameters are Nm0 =2, Nm1 =2, γ

s0
=10, γ

s1
=10, a=3, and b=3. Estimation results

are robust to reasonable changes in the prior hyperparameters such as γ
s0

=2 and γ
s1

=50. The
length of all MCMC runs is about 3 million draws. Using MATLAB on a PC with Intel 2.7 GHz
processor and 8 GB RAM, it takes about 38 seconds to obtain 100 MCMC draws. Since the draws
are highly serially correlated, we thin the MCMC sample keeping only every 100-th draw. We
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Figure 3

Posteriors of c.f. CCPs with p,G fixed as in DGP with bd =∞ (solid), 0.25 (dash), 1 (dash-dot). Vertical lines: “true”

c.f. CCPs with εi extreme value i.i.d

report estimation results using the thinned samples. Trace plots of MCMC draws from several
simulator runs suggest that the MCMC algorithm converges.8 Figure 5 displays posteriors for
the actual CCPs and the counterfactual CCPs together. Compared with the posterior of the actual
CCPs, the posterior of the counterfactual CCPs p̃ appears to be shifted slightly to the right. Let
us provide an intuitive explanation for this increase in counterfactual CCPs. Let V (x) denote
the expected continuation value when the current mileage is x and the engine is not replaced.
When an engine is replaced the bus in the next period has mileage x=1+j with probability
πj. This means that the expected continuation value when engine is replaced is V (1) (it is the
same as the one for not replacing the engine at x=1). Then, the choice probability is given by
p(x)=F(u1(x)−u0(x)+β[V (1)−V (x)]) and the effect of a change in the transition probabilities
on p(x) depends on how the change in V (1) compares to the change in V (x). For different
specifications of (u1(x),u0(x)), the effect of a change in π on (V (1)−V (x)) can be either positive
or negative. Moreover, the effect can be positive at some x and negative at other x. Intuitively,
when transitions to lower mileage become more likely both the expected continuation values of
engine replacement and maintenance will go up. Which one goes up more seems to depend on
the behaviour of per-period payoff functions and the rest of the structural parameters. For our
parameter values, the change is positive for all x.

8. Trace plots and prior and posteriors comparisons are presented in the Supplementary Materials (Norets and Tang
(2013)).
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Figure 4

Identified set projections for counterfactual CCPs with bd =∞

Figure 5

Posteriors for actual CCPs (solid) and counterfactual CCPs (dashed). No bounds on δ. Vertical lines show “true” values

for actual and counterfactual CCPs
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Figure 6

Posteriors for actual CCPs with restrictions on F: bd =∞ (solid), bd =1 (dash-dot), bd =0.25 (dashed). Vertical lines

are “true” actual CCPs

Figure 5 also reveals that the posteriors for the CCPs flatten out as the mileage increases. The
height of posterior densities for the CCP is over 500 at x=5 and close to 20 at x=80. This happens
because in our simulated data, most of the engines are replaced at lower or medium mileages.
Thus, there are few observations for high mileage and the CCPs for high mileage are estimated
less precisely. Figures 6 and 7 present estimation results with additional restrictions on quantiles
of F introduced in Section 4.6. While changing bd from infinity to 1 has no visible effect on the
actual CCPs posteriors, setting bd =0.25 decreases the heavy right tails of the CCPs posteriors for
large mileage. These effects are even more pronounced for the counterfactual CCPs: the almost
flat posterior for the CCP at x=80,85,90 (with bd =1,∞) becomes much more informative with
bd =0.25. The marginal posteriors for higher coordinates k =80,85,90 in Figure 7 should also
be interpreted as evidence that a specification of the unobserved state distribution only has a
substantial impact on the counterfactual CCPs for a few observed states. Comparing the posterior
distributions with the identified sets for the counterfactual CCPs in Section 5.3, we can assess
the contribution of the lack of point identification to the posterior distributions. A comparison of
Figures 3 and 7 suggests that the identified sets for the counterfactual CCPs are small relative to
the posterior support for most of the coordinates of p̃.

5.5. Inference for payoff parameters using real data

In this subsection, we compare parameter estimation results from Rust (1987) and our semi-
parametric procedure using Rust’s data on the buses from group 4. Rust’s estimates for
(θ0,θ1) from Table IX are (10.075,−0.002293) with the standard errors correspondingly
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Figure 7

Posteriors for c.f. CCPs with restrictions on F: bd =∞ (solid), bd =1 (dash-dot), bd =0.25 (dashed). Vertical lines are

“true” c.f. CCPs

(1.582,0.000639). Figure 8 depicts a 90% confidence set for (θ0,θ1) obtained without any
parametric assumptions about F. The confidence set is the union of the sets shown in Figure 8. The
algorithm for its construction is described in Section 4.2. A comparison of the confidence set with
Rust’s results is consistent with the identification results of Section 5.1 based on simulated data:
distributional assumptions about unobserved states can have an enormous effect on parameter
estimates in DBCMs.

6. EXTENSIONS AND FUTURE WORK

Our method can be extended to dynamic binary choice games of incomplete information. In such
games, the individual player’s problem is similar to the single agent’s problem we described
above, see Aguirregabiria and Mira (2007) and Pesendorfer and Schmidt-Dengler (2008). The
essential difference is that the agent’s per-period payoff and the observed states transition
probabilities depend on the actions of other players. As Aguirregabiria and Mira (2007) and
Pesendorfer and Schmidt-Dengler (2008), we can consider Markov perfect equilibria and assume
that the observed data correspond to a single equilibrium (or that observations can be divided into
groups or markets so that every group corresponds to a single equilibrium). Then, the identified
sets for counterfactual CCPs and per-period payoffs can be characterized in the same way as in
the single-agent case considered above.

Our methodology can also be extended to models with a finite number of unobserved
agent types. In these models, CCPs for each agent type can be non-parametrically point
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Figure 8

90% confidence set for θ

identified. Kasahara and Shimotsu (2009) provide testable sufficient conditions for that. Under
point identification of CCPs for each agent type, we can apply Corollaries 4 and 5 to
characterize identified sets for per-period payoffs and counterfactual CCPs for each type. Finite
number of unobserved agent types can also be accommodated in MCMC algorithms by using
standard data augmentation techniques for finite mixture models (Diebolt and Robert, 1994;
Fruhwirth-Schnatter, 2006). It also seems possible to extend the MCMC algorithm to estimation
of models with time-variant unobserved heterogeneity considered by Arcidiacono and Miller
(2011). Generalizing our framework to multinomial choice models is an important direction for
future research. Finally, tuning and extending the proposed MCMC algorithms to more complex
DBCMs with high-dimensional parameters could be a difficult task, and this is another important
area for future work.

APPENDIX

A. MCMC ALGORITHM

This appendix provides a description of the Metropolis-within-Gibbs algorithm for exploring the posterior distribution
of (p,p̃,π,z,z̃,α,m,s) defined in Section 4.4. The algorithm is implemented in Matlab. The computer code is available
on the website of the Review of Economic Studies. The algorithm consists of the following blocks.

1 Stack current draws of p and p̃ in one vector (p,p̃). Sort (p,p̃) in an ascending order. Draw a candidate for each
even coordinate of the sorted vector from a beta distributions proportional to the product of (4.22) and (3.19) and
truncated to be between the adjacent odd coordinates. Accept the draw with probability 1 if the candidate does
not violate the model restrictions (p̃∈P(p,G)) and reject otherwise. This block is introduced because draws that
do not preserve the order and change many coordinates of (p,p̃) at the same time are rarely accepted.

2 The same as block 1 but for odd coordinates. Markov transition in blocks 1and 2 does preserve the stationary
distribution of the Markov chain. However, since the model restrictions in Rust’s model do not imply a particular
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order of coordinates in (p,p̃) (they only imply an order within p and p̃ separately) we need to add Markov transitions
that would allow a change in the order. The following three blocks achieve this.

3 Pick an index k ∈{1,...,K} randomly or deterministically. Draw a candidate for pk from a beta distribution
proportional to product of (4.22) and (3.19) and truncated to (pk−1,pk+1). Accept the draw with probability 1 if
the candidate does not violate the model restrictions and reject otherwise.

4 The same as block 3 but for p̃k .

5 Metropolis-Hastings random walk algorithm for (p,p̃,π ) with a normal proposal distribution. This block ensures
that any part of the posterior support can be reached by the algorithm, which is required for MCMC convergence;
see, for example, Tierney (1994) or Geweke (2005). The variance of the proposal distribution has to be small in
this block to get any accepted draws.

6 Draw a candidate for π from a Dirichlet distribution proportional to the product of (4.22) and (3.19). Accept the
candidate with probability 1 if it does not violate the model restrictions and reject otherwise.

7 Blocks for sampling beta mixture prior parameters (z,z̃,α,m,s) are described in Norets and Tang (2010)

Since it is computationally expensive to verify the model restrictions, we combine block 6 with all other blocks
except 5. We start the algorithm from a solution to the problem corresponding to extreme value distribution for the
shocks (we know it satisfies the model restrictions). We check the correctness of the algorithm implementation by joint
distribution tests; see Geweke (2004).

B. LINEAR PROGRAMMING ALGORITHMS

In this section it assumed that the per-period payoff is defined parametrically (uj =Zjθ ).

B.1. Verifying that a vector of counterfactual CCPs belongs to the identified set

To be specific let us describe the algorithm when the counterfactual does not change u. To verify the model restrictions
(whether p̃∈P(p,G)) we do the following: (i) express δ as a linear function of (θ,e) and δ̃ as a linear function of (θ,ẽ)
using (2.17), where the linear coefficients depend on (p,G) and (p̃,G̃) respectively; (ii) substitute these linear functions
into strict inequalities described by Corollary 5; (iii) the result of (i)–(ii) is a system of strict inequalities Ax<b, where
x= (θ ′,e′,ẽ′,δm)′ and matrix A and vector b are computed using (p,p̃,G,G̃,β); (iv) solve the following linear programming
problem: minx,t t subject to Ax−t ≤b. If the resulting optimal t∗(p,G,p̃) is non-positive then p̃∈P(p,G).

B.2. Verifying that a vector of actual CCPs is consistent with model restrictions

To verify the model restrictions from Theorem 1 we do the following: (i) express δ as a linear function of (θ,e) using
(2.17), where the linear coefficients depend on (p,G); (ii) substitute this linear function into strict inequalities (2.14)–
(2.16); (iii) the result of (i)–(ii) is a system of strict inequalities Ax<b, where x= (θ ′,e′,δm)′ and matrix A and vector b
are computed using (p,G,β); (iv) solve the following linear programming problem: minx,t t subject to Ax−t ≤b. If the
resulting optimal t∗(p,G) is non-positive then p is consistent with the model.

B.3. Computing the identified set for per-period payoffs

B.3.1. Algorithm I. This algorithm for recovering the identified set of θ , denoted by �I (p,G), exploits the
convexity of �I (p,G) and the supporting hyperplane theorem, which implies that the boundary of �I (p,G) can be fully
characterized by a set of supporting hyperplanes. More specifically, to approximate �I (p,G), we define a finite grid on
normal vectors of hyperplanes. A normal vector of a hyperplane is a unit vector orthogonal to the hyperplane. The grid,
w1,...,wM , is constructed using a grid on d−1 angles in a spherical coordinate system, where d is the dimension of θ .

For each wi in the grid, we use a linear programing algorithm to find a pair of hyperplanes orthogonal to wi that
are tangent to the boundary of the identified set. Specifically, we solve two linear programing problems that respectively
minimize and maximize the index w′

iθ , subject to the constraint that θ is in the identified set with some additional small
slack η>0. More formally, we minimize and maximize w′

iθ subject to A
y≤b
 −η, where y= (θ,e,δm), and matrix A


and vector b
 are such that A
y<b
 represent the system of equalities and inequalities from Corollary 4 characterizing the
identified set (the equalities are used to substitute out δ in the strict inequalities). The slackness parameter η is introduced
so that we can use weak inequalities A
x≤b
 −η in the constraints of the optimization problem (there would exist no
solution under strict inequalities).
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For each i let us denote the solutions to the minimization and maximization problems, respectively, by y∗
i

and y∗
i .

The sub-vectors in y∗
i

and y∗
i that correspond to θ are approximately on the boundary of �I (p,G) along the direction wi.

If the researcher is interested only in a sub-vector θ1 ∈R
d1 of θ = (θ1,θ2) then the normal vector wi is defined as a unit

vector in R
d1 and the above algorithm is applied with the objective w′

iθ1 in the linear program. Note that when d1 =1,
the dimension of the linear program does not change but the grid on the normal vectors consists only of 1 element.

B.3.2. Algorithm II. This algorithm performs grid search in the original parameter space. It partitions the
parameter space into hypercubes (for example, grid rectangles in R

2) and collects all hypercubes that contain at least one
parameter value consistent with the actual CCPs.

The algorithm starts with a hypercube known to contain θ in the identified set, which is obtained from the solution
of the linear program described in Section B.2.

Once an initial hypercube is located, we check whether the adjacent hypercubes have a non-empty intersection with
the identified set. Specifically, when θ is in R

2, we need to check the eight adjacent rectangles. To check a given rectangle
we combine linear inequalities that define the rectangle with the linear inequalities from Section B.2 and check if they
are jointly feasible. If yes, we include the rectangle into the approximation of the identified set. We continue until all the
boundary rectangles of the identified set approximation have no unchecked adjacent rectangles.

This grid search algorithm has to solve more LP programs than Algorithm I described above. However, the linear
programs in Algorithm II are numerically more stable in Matlab in the case of Rust’s model. Therefore, Algorithm II is
used to obtain results in Figures 1, 2, and 8. The results for the entry/exit model in Norets and Tang (2013) are obtained
by Algorithm I.

Matlab solution of one linear program in Algorithms I or II applied to Rust’s model takes about 1 second on a PC
with Intel 2.7 GHz processor and 8 GB RAM.

C. PROOFS

Proof (Sufficiency in Lemma 1)
Suppose p satisfies (2.5). We will show that it is a vector of CCPs. Define vectors y0 and y1 as follows,

y1 = (I −βG1)−1
[

u1 +βG1[∫ ∞

F−1(p|X)
sdF(s|X)−(I −diag(p))F−1(p|X))

]]
(C.1)

y0 = (I −βG0)−1
[

u0 +βG0big[
∫ ∞

F−1(p|X)
sdF(s|X)+diag(p)F−1(p|X)

]]
.

By (2.5) and definition of (y0,y1), we have F−1(p|X)=y1 −y0 and p=∫ y1−y0
−∞ dF(s|X)). Using these two equations we

can get rid of p in (C.1),

y1 = (I −βG1)−1
[

u1 +βG1[∫ ∞

y1−y0

sdF(s|X)−
∫ ∞

y1−y0

dF(s|X)(y1 −y0))
]]

(C.2)

y0 = (I −βG0)−1
[

u0 +βG0[∫ ∞

(y1−y0)
sdF(s|X)+

∫ ∞

(y1−y0)
dF(s|X)(y1 −y0)

]]
.

From (C.2) one can reverse the steps leading from (2.2) to (2.4) in Section 2.2 to show that (y0,y1) have to satisfy the
Bellman equation (2.2). Since the solution of the Bellman equation is unique, (y0,y1)= (v0,v1) and p=∫ y1−y0

−∞ dF(s|X) is
a vector of CCPs. ‖
Proof (Corollary 3)

(i) The system of NK equations characterizing CCPs for N agent types is⎡
⎢⎢⎣

M1
U u=[M1

D,−M1
E ][d′

1,e
′
1]′

.

.

.

MN
U u=[MN

D ,−MN
E ][d′

N ,e′
N ]′

⎤
⎥⎥⎦, (C.3)

where dn and en are K-vectors with coordinates dn,k =F−1(pn
k |x=k), en,k =∫ ∞

dn,k
sdF(s|x=k); and

Mn
U =[ (I −βG1,n)−1,−(I −βG0,n)−1 ]

Mn
D = (I −βG1,n)−1[I −diag(pn)]+(I −βG0,n)−1diag(pn)

Mn
E = (I −βG1,n)−1βG1,n −(I −βG0,n)−1βG0,n.

Since (I −βGj,n)−1 = I +βGj,n +β2(Gj,n)2 +β3(Gj,n)3 + ..., the sum of all columns in (I −βGj,n)−1 must be proportional
to (1,1,...,1)′. It then follows that the maximum rank possible is 2K −1 for the NK-by-2K matrix of coefficients in front
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of u. When the rank of [(M1
U )′,...,(MN

U )′]′ is equal to r and 2K −r components of u are normalized to some values, the
linear system in (C.3) has a unique solution for the rest of the components of u.

(ii) Multiplication of the matrix in (2.6) by

[ −I +βG1,1, 0K×K

0K×K , −I +βG0,2

]
and

[
0K×K , −I +βG1,2

I −βG0,1, 0K×K

]
(C.4)

from the left and right correspondingly delivers the matrix in (2.7). Since matrices in (C.4) have full rank, the multiplication
does not affect the rank and (2.7) is proved.

To prove (2.8) it suffices to show that the dimensions of the null spaces of the matrices in (2.6) and (2.8) are the same
(the dimension of the matrix is equal to the sum of its rank and the dimension of its null space). Suppose x1,...,xl ∈R

K

are a basis of the null space of the matrix in (2.8). Define yi = (I −βG1,1)(I −βG0,1)−1xi = (I −βG1,2)(I −βG0,2)−1xi,
i=1,...,l, where the second equality follows from the definition of xi. Vectors (y′

i,x
′
i)

′, i=1,...,l, are independent
since xi’s are independent. For any (y′,x′)′ in the null space of the matrix in (2.6), y= (I −βG1,1)(I −βG0,1)−1x=
(I −βG1,2)(I −βG0,2)−1x and, thus, x is in the null space of the matrix in (2.8) and x=∑l

i=1αixi for some scalars αi’s.
It follows that y=∑l

i=1αiyi. Thus, (y′
i,x

′
i)

′, i=1,...,l, form a basis of the null space of the matrix in (2.6) with N =2,
and (2.8) is proved.

(iii) This part is an immediate implication of (2.8) since multiplication by a square matrix of full rank (for example,
I −β∗G0,1) does not affect the rank.

‖
Proof (Lemma 2)

Construct a linear system of 2K equations in u by stacking (2.5) for p and (u,G,β,F) and (2.5) for p̃ and (u,G̃,β,F).
The system can be simplified as

A1u1 −A0u0 =B[Q(p)′,κ(p)′]′ (C.5)

Ã1u1 −Ã0u0 = B̃[Q(p̃)′,κ(p̃)′]′, (C.6)

where Aj =
(
I −βGj

)−1
and Ãj =

(
I −βG̃j

)−1
are K-by-K matrices constructed from the observed G and the counterfactual

G̃ , respectively; B=[A1,A0 −A1] and B̃=[Ã1,Ã0 −Ã1] are K-by-2K ; and Q and κ are functions that map from (0,1)K

to R
K with coordinates

Qk(p)=F−1(pk |xk), κk(p)=
∫ Qk (p)

−∞
(Qk(p)−s)dF(s|xk), k =1,...,K .

The form of these two functions depend on the unobserved state distribution F. The vectors (p,p̃) denote observed and
counterfactual CCPs respectively. Suppose we set u0 =c while the truth is u0 =u∗

0. Given this assignment of u0, the
remaining K parameters in u1 are recovered as

u1 =A−1
1

{
B[Q(p)′,κ(p)′]′ +A0c

}
. (C.7)

The counterfactual analysis then amounts to recovering the p̃ that satisfies

B̃[Q(p̃)′,κ0(p̃)′]′ = Ã1A−1
1 B[Q(p)′,κ(p)′]′ +

(
Ã1A−1

1 A0 −Ã0

)
c. (C.8)

With F assumed known and p identified from the DGP, this implies that whenever(
Ã1A−1

1 A0 −Ã0

)
(c−u∗

0) 	=0, the choice of c has an impact on p̃ predicted as the solution to the equation above. ‖
Proof (Lemma 3)

In this case, the counterfactual CCPs, denoted p̂, are characterized by

A1(αu1 +�1)−A0(αu0 +�0)=B[Q(p̂)′,κ(p̂)′]′, (C.9)

where Aj , Q, and κ are defined as in the proof of Lemma 2. Suppose the truth in DGP is u0 =u∗
0 but we set u0 equal to

some arbitrarily chosen vector c in order to estimate u1. With u1 recovered as in (C.7), identifying counterfactual CCPs
amounts to finding p̂ such that

B[Q(p̂)′,κ(p̂)′]′ =αB[Q(p)′,κ(p)′]′ +A1�1 −A0�0. (C.10)

It then follows that the choice of c has no impact on the characterization of p̂ in (C.10). ‖
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Proof (Lemma 4)
Suppose 1>p1 >p2 > ···>pL >0, δ1,...,δL , e1,...,eL , and F satisfy (2.10)–(2.13). Then,

e1 =
∫ ∞

δ1

sdF >δ1

∫ ∞

δ1

dF =δ1(1−p1)

imply (2.14). Inequalities in (2.15) follow since

ei+1 −ei

pi −pi+1
=

∫ δi
δi+1

sdF

F(δi)−F(δi+1)
∈ (δi+1,δi).

for F satisfying (2.10). By (2.11),

ek =
∫ ∞

δk

sdF =−
∫ δk

−∞
sdF >−δkpk

and (2.16) follows.
To prove the other direction of the lemma, suppose (2.14)–(2.16) hold. Let us construct a particular density f (s)>0 that

satisfies (2.10)–(2.13). For s∈ (−∞,δk] let f (s)=ck exp(bks), where bk =pk/(δkpk +ek) and ck =bkpk exp(−bkδk). For s∈
[δ1,∞) let f (s)=c1 exp(b1s), where b1 =−(1−p1)/(e1 −(1−p1)δ1) and c1 =−b1(1−p1)exp(−b1δ1). For s∈ (δi,δi−1) let
f (s)=hi11(δi,ri)(s)+hi21(ri,δi−1)(s), where ri = (ei −ei−1)/(pi−1 −pi), hi1 =[(pi−1 −pi)δi−1 −(ei −ei−1)]/[(ri −δi)(δi−1 −
δi)], and hi2 =[(ei −ei−1)−(pi−1 −pi)δi]/[(δi−1 −ri)(δi−1 −δi)]. It is easy to verify by direct calculation that such f
satisfies (2.10)–(2.13). ‖
Proof (Corollary 4)

Part (i) is an immediate implication of Theorem 1. To prove part (ii) suppose u1,u2 ∈U (p,G). By definition, there
exist (e1,δ1,δ1

m) and (e2,δ2,δ2
m)∈R

2K+1 such that (p,δ1,δ1
m,e1,u1) and (p,δ2,δ2

m,e2,u2) satisfy conditions (a) and (b)
that define U (p,G) in Corollary 4. Let δα =αδ1 +(1−α)δ2 for a generic α∈ (0,1), and likewise define uα,eα,δα

m also as
convex combinations. By convexity of U, uα ∈U. With β,G,p fixed, the linear equalities and inequalities in conditions
(a) and (b) hold for (p,uα,δα,eα,δα

m). Thus uα ∈U (p,G) for any α∈ (0,1). ‖
Proof (Lemma 5)

To prove the lemma it suffices to show that the actual CCP p cannot belong to the identified set of counterfactual
CCPs P(p,G) under the conditions of the lemma.

Suppose p∈P(p,G). Then δ̃=δ and ẽ=e. However, in this case, the condition assumed in the lemma implies that
(2.17) cannot hold simultaneously for actual and counterfactual environments. This contradicts the supposition that
p∈P(p,G). ‖
Proof (Lemma 6) If θ1 <0, then u(x,ε,d) is non-increasing in x. Also, (G0,G1) are monotone non-increasing Markov
transition matrices. Therefore, by a standard argument for value function monotonicity (Stokey and Lucas (1989)), v1

and v0 from (2.2) are non-increasing in x. Moreover, v1 does not depend on x and v0 is strictly decreasing in x because
u0 is strictly decreasing. Thus, p(x)=F(v1(x)−v0(x)) is strictly increasing in x. ‖
Proof (Lemma 7)

In Rust’s model, at x=1 the future expected value functions are equal as the observed state transition probabilities
are the same for d =1 and d =0 at x=1. Thus, the choice probability at x=1 is determined only by the per-period payoff
functions and the distribution of ε. Therefore, if a counterfactual experiment involves changes only in the observed state
transition probabilities π , then the coordinate of the CCP vector corresponding to x1 does not change: p1 = p̃1. ‖
Proof (Lemma 8) Under the conditions of the lemma, the characterization of {(p,p̃,π ) : p̃∈P(p,π )} can be given in
terms of the feasibility of a system of strict inequalities (see Appendix B.1). Since the inequalities are strict, they have to
be satisfied in an open neighbourhood of the original feasible point. ‖

Lemma 9. Any confidence set for P(p,G) can be represented as a superset of a set in the form (3.21).

Proof To see this formally consider an arbitrary 100(1−α)% confidence set for P(p,G) denoted by AP
1−α(ω), where

ω denotes data and possibly randomization variables. Define Cp,G
1−α(ω)={p′,G′ : P(p′,G′)⊂AP

1−α(ω)}. Denote the DGP

values by (p0,G0). By definition of Cp,G
1−α(ω), [ω :P(p0,G0)⊂AP

1−α(ω)]⊂[ω : (p0,G0)∈Cp,G
1−α(ω)]. Thus, if AP

1−α(ω) has

100(1−α)% coverage for P(p0,G0) then Cp,G
1−α(ω) has at least 100(1−α)% coverage for (p0,G0).Also, CP

1−α(ω) in (3.21)

defined by these Cp,G
1−α(ω) is a 100(1−α)% confidence set for P(p0,G0), and CP

1−α(ω)⊂AP
1−α(ω),∀ω. ‖
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