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ABSTRACT
We consider the construction of set estimators that possess both Bayesian credibility and frequentist cover-
age properties. We show that under mild regularity conditions there exists a prior distribution that induces
(1 − α) frequentist coverage of a (1 − α) credible set. In contrast to the previous literature, this result does
not rely on asymptotic normality or invariance, so it can be applied in nonstandard inference problems.
Supplementary materials for this article are available online.

1. Introduction

Set estimators, such as confidence and credible sets, are stan-
dard means of describing uncertainty about model parameters
and forecasts. The desirability of both Bayesian and frequentist
properties for set estimators has long been understood in the lit-
erature. For instance, it is necessary (and sufficient) for a set esti-
mator to be a credible set of level 1 − α relative to some prior to
rule out the existence of relevant subsets,∗ and more generally
to ensure “reasonable” conditional properties; see Fisher (1956),
Buehler (1959), Pierce (1973), and Robinson (1977) or Section
10.4 in Lehmann (1986).

In the large class of locally asymptotically normal (LAN)
models, the maximum likelihood estimator is asymptoti-
cally normally distributed, and the posterior is asymptotically
Gaussian with the same variance by virtue of the Bernstein–
von Mises Theorem. Frequentist and Bayesian approaches thus
deliver asymptotically equivalent set estimators in LANmodels,
and usual classical procedures also have attractive conditional
properties. In recent years, much attention has been devoted to
nonstandard problems outside the LAN class, where this equiv-
alence does not hold. For instance, nonstandard problems arise
in partially identified models (e.g., Imbens and Manski 2004;
Chernozhukov, Hong, and Tamer 2007), weakly identifiedmod-
els (e.g., Staiger and Stock 1997; Andrews, Moreira, and Stock
2006), change-point problems (e.g., Carlstein, Müller, and Sieg-
mund1994), andmodels for highly persistent time serieswith an
autoregressive root near unity (e.g., Chan andWei 1987; Phillips
1987).

In this article, we consider construction of set estimators
that have both prespecified frequentist coverage and Bayesian
credibility. For our main result, we assume a finitely discretized
parameter space. We show that under a mild continuity condi-
tion, for a given type of credible set (such as the highest posterior
density (HPD) set or the equal-tailed set), there always exists

CONTACT Andriy Norets andriy_norets@brown.edu. Economics Department, Brown University, Providence, RI .
Supplementary materials for this article are available online. Please go towww.tandfonline.com/r/JASA.
∗A relevant subset is a subset of the sample space such that conditional on the observations falling into this set, the coverage is below the nominal level of the confidence
set for all parameter values.

a prior distribution that induces frequentist coverage of level
1 − α for the (1 − α)-credible set. Previous results for Bayesian
sets with frequentist coverage are either for invariant problems
(see, e.g., Section 6.6.3 in Berger 1985), or for (higher order)
asymptotic equivalence of coverage and credibility in LANmod-
els under the “probability matching prior” (see Datta and Muk-
erjee 2004 for a survey and references). In contrast, our result
is generic in the sense that it applies to any (discretized) infer-
ence problem. Our result thus generalizes the notion of “objec-
tive” probability matching priors to small sample and non-LAN
contexts.

For problems without nuisance parameters, it turns out that
the HPD credible set with coverage inducing prior is always
similar (that is it has exact coverage for all parameter values)
and length-optimal (no uniformly shorter confidence interval
can exist). Thus, for such problems, this set estimator provides
an attractive description of parameter uncertainty from several
perspectives.

The main theoretical result can be applied and extended to
different settings. First, the existence of coverage inducing priors
also holds for prediction sets. Second, the result can be applied
to settings with a general parameter space, hierarchical Bayesian
priors, and weighted frequentist coverage. When the parameter
space is continuous but bounded, this extensiondelivers credible
sets with uniform frequentist coverage up to an arbitrarily small
error. For unbounded parameter spaces, the extension can be
used in a “guess and verify” method for construction of credible
sets with near-uniform frequentist coverage.

The proof of the main result, which is based on a fixed-point
theorem, suggests an iterative procedure for computing the cov-
erage inducing prior. The procedure starts with an arbitrary
prior distribution and then iteratively increases the relative prior
weight for the parameter values at which the coverage is below
the specified level. We use this method to construct confidence

©  American Statistical Association

http://dx.doi.org/10.1080/01621459.2015.1086654
mailto:andriy_norets@brown.edu


1234 U. K. MÜLLER AND A. NORETS

sets for the date and magnitude of a structural break in a time
series model and for the largest root in a local-to-unity autore-
gressive model.

2. Main Results

2.1. Definitions and Notation

We start by assuming a finite parameter space, � =
{θ1, . . . , θm}, with θ ∈ � being the parameter of interest. In
Section 2.3, we discuss implications for continuous parameter
spaces.

Suppose the distribution of the data X ∈ X given parameter
θ , P(·|θ ), has density p(x|θ ) with respect to a σ -finite measure
ν. Without loss of generality, we assume that ν is equivalent to∑m

j=1 P(·|θ j). Since the parameter space is discrete, it is conve-
nient to use randomization in defining set estimators such as
confidence or credible sets. Thus, let us define a rejection prob-
ability function ϕ : �× X �→ [0, 1], with ϕ(θ, x) the probabil-
ity of not including θ conditional on having observed X = x. If
ϕ(θ j, ·) defines a level α test of H0 : θ = θ j,∫

ϕ(θ j, x)p(x|θ j)dν(x) ≤ α (1)

for all j = 1, . . . ,m, then the set that excludes θ ∈ �with prob-
ability ϕ(θ, x) when X = x is observed forms a 1 − α confi-
dence set. For convenience, we will refer to ϕ as defining a
set estimator. Also, we assume 0 < α < 1 throughout. A con-
fidence set is called similar when (1) holds with equality for all
j = 1, . . . ,m.

For a prior π = (π1, . . . , πm)
′, π j ≥ 0,

∑
j π j = 1, the pos-

terior probability mass function is defined as

p(θ j|x) = p(x|θ j)π j∑m
k=1 p(x|θk)πk

, j = 1, . . . ,m.

A 1 − α credible set is defined by any ϕ such that the posterior
probability of excluding θ is equal to α,

m∑
j=1

p(θ j|x)ϕ(θ j, x) = α, ∀x

or
m∑
j=1

(α − ϕ(θ j, x))p(x|θ j)π j = 0, ∀x. (2)

In this definition, the credibility level is evaluated prior to the
realization of the randomization device if 0 < ϕ(θ, x) < 1 for
some θ ∈ �. Similarly, the length of the set ϕ(·, x) is defined as
its expected value

∑m
j=1(1 − ϕ(θ j, x)), and a level 1 − α HPD

set is a shortest set of credibility level 1 − α.

2.2. Existence of Coverage Inducing Prior

In this section, we prove that for families of credible sets that sat-
isfy a continuity restriction, there always exists a prior that turns
a 1 − α credible set into a 1 − α confidence set. This result pro-
vides an attractive recipe for finding confidence sets: (i) choose
a type of credible set suitable for the problem at hand, for exam-
ple, HPD if shorter sets are desirable, (ii) determine a prior that

turns this credible set into a confidence set. Aswe illustrate in the
application section, this simple recipe is a practical and power-
ful approach to tackling difficult inference problems. It can also
be interpreted as a way to construct default or reference priors
for Bayesian inference.

Theorem 1. Suppose ϕ(θ, x;π) defines a 1 − α credible set for
any priorπ on� = {θ1, . . . , θm}. Define z j(π ) = ∫

[ϕ(θ j, x;π)
− α]p(x|θ j)dν(x) and z(π ) = (z1(π ), . . . , zm(π ))′. Assume
z(π ) is continuous in π . Then, there exists π	 such that
ϕ(θ j, x;π	) defines a 1 − α confidence set, that is

∫
ϕ(θ, x;π	)p(x|θ )dν(x) ≤ α, ∀θ ∈ �.

Proof. The proof is analogous to the proof of the equilibrium
existence in an exchange economy with m goods (π corre-
sponds to the vector of prices and z(π ) corresponds to the excess
demand); see, for example, Chapter 17 inMas-Colell,Whinston,
and Green (1995).

Let z+
j (π ) = max{0, z j(π )}, z+(π ) = (z+

1 (π ), . . . ,

z+
m(π ))

′, and

q(π ) = π + z+(π )∑m
j=1(π j + z+

j (π ))
.

Note that q is continuous (continuity of z(π ) is assumed)
and q : 
m−1 → 
m−1, where
m−1 is an (m − 1)-simplex. By
Brouwer’s fixed-point theorem, there exists π	 such that π	 =
q(π	).

Since ϕ(θ, x;π	) defines a 1 − α credible set,

(π	)′z(π	) =
∫ ⎛

⎝ m∑
j=1

[ϕ(θ j, x;π	)− α]p(x|θ j)π	j

⎞
⎠ dν(x) = 0.

Therefore,

0 = (π	)′z(π	) = q(π	)′z(π	)

= z+(π	)′z(π	)
m∑
j=1

[π	j + z+
j (π

	)]

and z+(π	)′z(π	) = 0. The latter equality implies z j(π	) ≤ 0
for all j ∈ {1, . . . ,m}, and the claim of the theorem follows. �

Theorem 1 appears to be new. We are aware of the follow-
ing related results. First, results on matching credible and clas-
sical sets are available for particular families of data distribu-
tions. The most well-known example is a normal likelihood
with known variance and improper uniform prior for the mean.
More generally, in invariant problems with continuous densi-
ties, 1 − α Bayesian credible sets under invariant priors have
1 − α frequentist coverage, see Section 6.6.3 in Berger (1985).
Second, Joshi (1974) showed that for an unbounded parameter
space the equivalence between Bayesian and classical sets can-
not hold for one-sided intervals and a proper prior (there is no
contradiction to the equivalence results under invariance since
invariant priors are improper on unbounded spaces). Third, the
Bernstein–von Mises theorem, see, for example, Section 10.2
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in van der Vaart (1998), states that under weak regularity con-
ditions implying the local asymptotic normality of the maxi-
mum likelihood estimator (MLE), standard classical and cred-
ible sets are asymptotically equivalent. There is also a literature
on higher order asymptotic equivalence of coverage and credi-
bility in LANproblems, see amonograph on the subject byDatta
andMukerjee (2004) and references therein. Note that our result
in Theorem 1 does not appeal to invariance or asymptotics,
and does not impose smoothness conditions on the likelihood
function.

Potentially, many types of credible sets, such as HPD and
equal-tailed sets, can satisfy the continuity requirement of the
theorem. A sufficient condition is that ϕ(θ, x;π) itself is a con-
tinuous function of the priorπ for almost all x. Undermild con-
ditions, this holds for HPD, one-sided, and equal-tailed credible
sets. The following theorem suggests that the use of HPD sets in
Theorem 1 is particularly attractive. The proof is given in online
Appendix A.

Theorem2. Suppose that for any θ ∈ � andX ∼ p(·|θ ), the like-
lihood ratio p(X |θi)/p(X |θ j) is an absolutely continuous ran-
dom variable for all i �= j. Then, an HPD set ϕ(θ, x;π) satis-
fies the following: (i) The continuity conditions of Theorem 1
are satisfied. (ii) The prior π	 puts positive mass on all θ ∈ �
and the resulting set ϕ(θ, x;π	) is a similar confidence set of
level 1 − α, that is,

∫
ϕ(θ, x;π	)p(x|θ )dν(x) = α for all θ ∈ �.

(iii) There does not exist a level 1 − α confidence set ϕ′ that is
weakly shorter than ϕ(θ, x;π	) for all x ∈ X (

∑m
j=1 ϕ

′(θ j, x) ≥∑m
j=1 ϕ(θ j, x;π	)) and strictly shorter for x ∈ Xl with ν(Xl ) >

0 (
∑m

j=1 ϕ
′(θ j, x) >

∑m
j=1 ϕ(θ j, x;π	)).

Thus, the HPD set with coverage inducing prior emerges as a
particularly compelling description of uncertainty: it is a 1 − α

credible set; it covers each θ with exact probability 1 − α; and
there does not exist a 1 − α confidence set that is uniformly
shorter.

Now suppose that the parameter of interest is γ = g(θ ) ∈
�, where g is not one-to-one. This arises for set estima-
tion in the presence of nuisance parameters, for instance. Set
estimators ϕ are then � × X �→ [0, 1] functions, but priors
still specify a probability distribution on �. Theorem 1 still
goes through as long as z(π ) with z j(π ) = ∫

[ϕ(g(θ j), x;π)−
α]p(x|θ j)dν(x) is continuous in π , so there still exists a prior
that induces coverage. The similarity of ϕ in Theorem 2, how-
ever, does not necessarily hold, since the coverage inducing
prior of the HPD set might have zero mass for some θ . The
HPD confidence set might thus have coverage above 1 − α for
these θ ’s.

2.3. Extensions

... Predictive Sets
It is particularly intuitive to insist on compelling conditional
properties when describing uncertainty in a forecasting setting.
The extension of our framework and theoretical results to pre-
diction sets is straightforward: Suppose we seek to describe
the uncertainty about a yet unobserved random variable Y ∼
pp(·|θ, x) after observing X = x, where X ∼ p(·|θ ),Y ∈ Y and
pp is a conditional density on Y with respect to a generic

measure νp. Let ϕp(y, x) denote the probability that y is not
included in a prediction set when x is observed (typically, y �→
1 − ϕp(y, x) is the characteristic function of the prediction set).
Then, for a given parameter θ and observed x, the probability
that the prediction set ϕp will not coverY is given by

∫
ϕp(y, x)pp(y|θ, x)dνp(y).

If we denote this probability by ϕ(θ, x), then the definition of
frequentist coverage and Bayesian credibility for ϕp are exactly
given by (1) and (2), respectively. Therefore, the existence of a
prior that guarantees frequentist nominal coverage for credible
sets (Theorem 1) also holds for prediction sets. Note that a prior
that induces coverage for predictive sets can be different from a
prior that induces coverage for the sets on the parameter space.

... General Parameter Space andWeighted Coverage
In this section, we apply Theorem 1 to settings with a gen-
eral parameter space, hierarchical Bayesian priors, andweighted
average coverage. In the following section, we show that this
extension implies existence of credible sets that have approxi-
mate frequentist coverage for bounded parameter spaces.

Consider a parameter space �̃ ⊆ R
k and a likelihood func-

tion p̃(x|θ̃ ) defined for every θ̃ ∈ �̃. Supposeψ j , j = 1, . . . ,m,
are probability densities with respect to Lebesgue measure on
�̃ and π = (π1, . . . , πm), π j ≥ 0,

∑
j π j = 1. The mixture

density

�(θ̃, π ) =
m∑
j=1

π j · ψ j(θ̃ ) (3)

can be thought of as a hierarchical prior distribution on �̃,
where π is a prior on a set of models � = (θ1, . . . , θm) with
common likelihood p̃(x|θ̃ ) and ψ j is a prior on θ̃ under model
θ j.

As in the setup of Theorem 1, fix a type of credible set such as
the HPD set and let ϕ̃(θ̃ , x;π) denote the rejection probability
characterizing a 1 − α credible set on �̃ of this type under prior
�(θ̃, π ). The set ϕ̃ here is viewed as a function of π , with the
ψ j ’s fixed. Define the marginal likelihood under model θ j by

p(x|θ j) =
∫

p̃(x|θ̃ )ψ j(θ̃ )dθ̃ .

Also, let

ϕ(θ j, x;π) =
∫
ϕ̃(θ̃ , x;π) p̃(x|θ̃ )ψ j(θ̃ )dθ̃

p(x|θ j) (4)

be the posterior noncoverage probability conditional on model
θ j. The prior weighted coverage of the set ϕ̃(θ̃ , x;π) in model
θ j is then defined by

∫ [∫
[1 − ϕ̃(θ̃ , x;π) p̃(x|θ̃ )]dν(x)

]
ψ j(θ̃ )dθ̃

=
∫
[1 − ϕ(θ j, x;π)]p(x|θ j)dν(x). (5)
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Note that the right-hand side of (5) is the same as the coverage
of θ j in the discrete model of Section 2.1. Also, Bayesian cred-
ibility of the set ϕ̃(θ̃ , x;π) at level 1 − α implies credibility (2)
in the discrete model of Section 2.1 of the set ϕ(θ, x;π) defined
in (4). Thus, if the weighted coverage rate in (5) is a continu-
ous function of π , then Theorem 1 implies the existence of π	
such that (5) evaluated at π	 is at least 1 − α for all models θ j,
j = 1, . . . ,m. In other words, Bayesian credible sets under the
π	 -mixture prior have ψ j-weighted average coverage of at least
1 − α for all j = 1, . . . ,m.

Let us note that the resulting sets are invariant to repa-
rameterization in the following sense. For a one-to-one
transformation f on �̃ with differentiable inverse f−1,
define ϕ̃ f (s, x;π	) = ϕ̃( f−1(s), x;π	) for s ∈ f (�̃). Then,
ϕ̃ f defines a 1 − α credible set for f (θ̃ ) under the prior∑

j π
	
jψ j( f−1(s))|d f−1(s)/ds| on f (�̃), and this set has

ψ j( f−1(s))|d f−1(s)/ds|-weighted coverage for j = 1, . . . ,m.

... Bounded Parameter Space and Approximations
Suppose �̃ is a bounded subset of Rk. Let {�̃m

j , j = 1, . . . ,m}
be a sequence of partitions of �̃ such that max j diam(�̃m

j ) → 0
as m → ∞. For a fixed m, define ψ j to be a uniform probabil-
ity density on �̃m

j , j = 1, . . . ,m. Define ϕ̃m(θ̃ , x;π) to be the
shortest (1 − α)-credible set with respect to the prior�m(θ̃ , π )

in (3) that is constant on each �̃m
j . This implies that the corre-

sponding set on the space of models, ϕm(θ, x;π), maximizes∑
j ϕ(θ j, x)vol(�̃

m
j ) subject to the credibility constraint (2).

Let us further assume that for any θ̃ ∈ �̃ and X ∼ p̃(·|θ̃ ), the
marginal likelihood ratio p(X |θi)/p(X |θ j) is an absolutely con-
tinuous random variable for any i �= j. Then, Theorem 2 and the
discussion above imply that for every m there exists πm	 such
that

α=
∫ ∫

ϕ̃m(θ̃ , x;πm	) p̃(x|θ̃ )]dν(x)ψ j(θ̃ )dθ̃ , j=1, . . . ,m.(6)

The following theorem shows that sets ϕ̃m(θ̃ , x;πm	) have
approximately uniform coverage and an approximate volume
optimality property.

Theorem 3. Assume that p̃(·|θ̃ ) is uniformly continuous in θ̃
under the L1(ν) distance. Then, for every ε > 0, there existsM
such that ∀m ≥ M: (i) the coverage of ϕ̃m(θ̃ , x;πm	) is within
ε of 1 − α for all θ̃ ∈ �̃; and (ii) for any (1 − α)-confidence set
φ̃(θ̃ , x), there exists Xm with, ν(Xm) > 0 such that∫

�̃

φ̃(θ̃ , x)dθ̃ < (1 + ε) ·
∫
�̃

ϕ̃m(θ̃ , x;πm	)dθ̃ (7)

for all x ∈ Xm.

The theorem is proved in Appendix B (online). Inequality
(7) for the volumes of set complements implies the following
inequality for the volumes of the sets∫
�̃

[1 − φ̃(θ̃ , x)]dθ̃ >
∫
�̃

[1 − ϕ̃m(θ̃ , x;πm	)]dθ̃ − ε · vol(�̃).

Thus, part (ii) of Theorem 3 delivers an approximate version of
the following equivalent restatement of Part (iii) of Theorem 2:

any competing confidence set either has the same volume almost
surely ν or its volume is strictly larger on a set of positive mea-
sure ν.

The assumptions of the theorem seem to be weak. The uni-
form continuity assumption holds, for example, when p̃(x|θ̃ ) is
continuous in θ̃ for every x and �̃ is compact (pointwise conver-
gence for densities implies convergence in the total variation dis-
tance and continuity implies uniform continuity on compacts).

... Unbounded Parameter Space
The mixture approach of Section 2.3.2 is also applicable to
unbounded parameter spaces. However, there might well not
exist a finite mixture that induces uniform coverage: Joshi’s
(1974) results imply that only an improper prior can induce cov-
erage of one-sided confidence sets under an unbounded param-
eter space.

At the same time, a nonstandard problem with unbounded
parameter space can sometimes be well approximated by a stan-
dard Gaussian shift experiment outside a sufficiently large but
bounded subset of the parameter space. For example, the prob-
lem of inference for an autoregressive root near unity, which
we consider below, has this property (see Section 4.1 of Elliott,
Müller, and Watson (2015) for a formal statement and addi-
tional examples). In this case, one can use the hierarchical mix-
ture approach to implement a “guess and verify” method for the
construction of a credible set with approximate frequentist cov-
erage that employs a flat prior on the nearly standard part of the
parameter space.

For concreteness, suppose the problem converges to the
Gaussian shift experiment as ς(θ̃ ) → ∞ for some function
ς : �̃ �→ R. Pick κS large enough so that �̃S = {θ̃ : ς(θ̃ ) >
κS} is the approximately standard part of the parameter space,
where a flat prior induces an HPD set with near-nominal cov-
erage, and let the bounded set �̃NS = �̃\�̃S be the remain-
ing nonstandard part. For m → ∞, let {�̃m

1 , . . . , �̃
m
m−1} be a

finer and finer partition of �̃NS, and let �̃m
m = {θ̃ : κS < ς(θ̃ ) <

κm}, where κm → ∞. Proceed similarly to Section 2.3.3 and
define �m(θ̃ , π ) with ψ j uniform on �̃m

j , j = 1, . . . ,m , and
let φ̃m(θ̃ , x;π) be the shortest (1 − α)-credible set relative to
�m(θ̃ , π ) that is constant on �̃ j for j = 1, . . . ,m − 1, but with-
out any restrictions on �̃m

m. The results of the previous sec-
tions then imply that there exists a large enough m and prior
πm	 such that φ̃m(θ̃ , x;πm	) has near-uniform coverage for
parameters in �̃NS. Also, the prior�m(θ̃ , πm	), which is flat on
�̃m

m, is expected to induce coverage close to the nominal level
for parameters θ̃ ∈ �̃S with κS � ς(θ̃ ) � κm. Further, contin-
uously extend �m(θ̃ , πm	) to an improper prior �̄m(θ̃ , πm	)

that is flat on �̃S, and define φ̄m(θ̃ , x;πm	) to be the shortest
1 − α credible set relative to �̄m(θ̃ , πm	) that is constant on
�̃m

j , j = 1, . . . ,m − 1 . Then, one would expect φ̄m(θ̃ , x;πm	)

to have approximately 1 − α coverage for all parameter values
with ς(θ̃ ) � κS, and also for θ̃ ∈ �̃NS, since φ̄m(θ̃ , x;πm	) is
presumably close to φ̃m(θ̃ , x;πm	) for all θ̃ ∈ �̃NS.

It seems possible to make the above discussion technically
precise under some conditions. We do not pursue this, though,
because we cannot show that �̄m(θ̃ , πm	) necessarily becomes
approximately flat for θ̃ ∈ �̃with ς(θ̃ ) close to κS, even for very
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large κS. Thus, for θ̃ ∈ �̃S with ς(θ̃ ) close to κS, the coverage of
φ̄m(θ̃ , x;πm	)might fall substantially short of the nominal level.

Nevertheless, it is possible to numerically check whether
φ̄m(θ̃ , x;πm	) has approximately nominal coverage for θ̃ with
ς(θ̃ ) close to κS. In several examples we considered, including
the autoregression example below, we find that it does. We con-
jecture that this result holds for a wide range of problems, but
leave a proof to future research.

3. Computing Coverage Inducing Priors

The proof of Theorem 1 is based on the Brouwer fixed-point
theorem with the coverage inducing prior being a fixed point.
There is large applied and theoretical literature on computing
fixed points. Scarf (1967) introduced the first algorithm that is
guaranteed to get an approximate fixed point in a finite num-
ber of steps. Eaves (1972) proposed a homotopy based algo-
rithm for computing fixed points. These two algorithms can be
used to solve our fixed-point problem. A presentation of more
recent theoretical literature that extends these early contribu-
tions can be found in a monograph by Yang (1999). It appears
that homotopy based methods are favored in the theoretical lit-
erature. Dixon and Parmenter (1996) provided an applied per-
spective onmethods for computing fixed points in the context of
solving for equilibria in economic models. It seems that applied
researchers prefer Newton-type methods even though they are
theoretically guaranteed to converge only when they start from
a point sufficiently close to the solution.

We do not intend to contribute to the literature on com-
puting fixed points. In our applications, the following simple
algorithm works well. We start with some prior π and itera-
tively increase its coordinates π j in proportion to undercov-
erage of ϕ(θ, x;π) at θ j . Thus, the algorithm essentially iter-
ates on the mapping q defined in the proof of Theorem 1,
for which the coverage inducing prior is a fixed point (see
Appendix C online for additional implementation details). This
procedure is not guaranteed to converge in general; some
counterexamples were given by Scarf and Hansen (1973). It is
guaranteed to converge when parameters have the following
substitution property: changing the prior π = (π1, . . . , πm) to
π ′ = (π1, . . . , πi−1, πi + ε, πi+1, . . . πm)/(1 + ε) for any j and
ε > 0 leads to a strict decrease in coverage at θi for all i �= j (see,
e.g., Section 17.H of Mas-Colell, Whinston, and Green 1995).
Unfortunately, this sufficient condition seems implausible in our
settings as the substitution property is likely to be violated for θi’s
that are close to θ j. Aweaker sufficient condition, (π	)′z(π ) > 0
for any π �= π	 and z(π ) defined in the proof of Theorem 1 also
appears difficult to verify. Nevertheless, the algorithm converges
very quickly in our applications. Thus, we do not pursue homo-
topy algorithms described inYang (1999) orNewton-typemeth-
ods that would require approximations to derivatives.

4. Applications

The following two sections illustrate the approach for the con-
struction of 95% nominal-level confidence sets in two nonstan-
dard inference problems. Additional computational details may
be found in Appendix C (online).

4.1. Break Date andMagnitude

In this section, we construct an (approximate) joint confidence
set for the date and magnitude of a parameter shift in a time-
series model. A large literature considers tests for parameter
instability, aswell as inference about the date of a potential break;
see Carlstein, Müller, and Siegmund (1994), Stock (1994), and
Perron (2006) for surveys and references. We are not aware,
however, of a previous construction of a joint confidence set for
the date and magnitude.

Consider first the simple casewhere themean of theGaussian
time series yt undergoes a single shift at time t = τ ofmagnitude
d, that is

yt = μ+ d1[t > τ ] + εt , t = 1, . . . ,T, (8)

where εt ∼ iidN (0, 1). As argued by Elliott and Müller (2007),
a moderate break magnitude is usefully modeled via asymp-
totics where d = dT = δ/

√
T , so that the parameter change is

of the same magnitude as the sampling uncertainty. Imposing
translation invariance to deal with the nuisance parameterμ, we
find that the partial sum process of the demeaned observations
ȳt = yt − T−1 ∑T

s=1 ys satisfies

T−1/2
�sT�∑
t=1

ȳt ∼X (s) = W (s)− sW (1)− δ(min(λ, s)− λs) (9)

for any s = t/T , whereW is a standardWiener process, and λ =
τ/T is the break datemeasured in the fraction of the sample size.
This suggests that the relevant observation in the limit experi-
ment is the continuous time processX . Elliott andMüller (2014)
formally showed that this is indeed the limit experiment in the
sense of LeCam inmodel (8), and also in well-behaved paramet-
ric time-series models where a single parameter β undergoes a
break of magnitude δ/

√
TIββ , with Iββ the Fisher information

about β in the stable model. The same limiting problem may
also be motivated using the framework in Müller (2011) with-
out reference to a parametric model.

The density of X under θ̃ = (λ, δ) relative to the measure of
a standard Brownian bridgeW (s)− sW (1) is given by

p(x|θ̃ ) = exp[−δx(λ)− 1
2δ

2λ(1 − λ)].

As in much of the literature, we rule out break dates arbitrarily
close to the beginning and end of the sample, and assume λ ∈
L = [0.15, 0.85]. Also, we restrict the break magnitude to δ ∈
D = [−15, 15], which should cover the empirically relevant part
of the parameter space for most applications, so that θ̃ ∈ �̃ =
L × D.

We implement the approach discussed in Section 2.3.3 with
�̃ partitioned into m = 168, 000 equal-sized rectangles �̃m

j of
size 0.0025 × 0.05. Panel (a) in Figure 1 displays the mixture
prior�m(θ̃ , πm	) that induces the 95% constrainedHPD set ϕ̃m
to have average coverage of 95% on �̃m

j . Pointwise coverage of
ϕ̃m is between 94.8% and 95.2% for all θ̃ ∈ �̃. A coarser par-
tition with rectangles of size 0.005 × 0.1 yields a numerically
similar average coverage inducing prior, with pointwise cover-
age between 94.5% and 95.4%.

As an empirical illustration, we revisit the question of a
potential break in the mean of U.S. labor productivity after
the second oil price shock. As reviewed by Jorgenson, Ho, and
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Figure . Break application.

Stiroh (2008), a number of authors argue for an upward shift in
the mid 90’s. Panel (b) in Figure 1 plots the series, taken from
Elliott andMüller (2014), with the sample means pre- and post-
1995Q4. Panel (c) plots the linearly interpolated partial sumpro-
cess X for these data (normalized by the square root of the long-
run variance to induce the limit in (9)), and panel (d) reports ϕ̃m
for this X . The set ϕ̃m excludes all parameter values with δ ≤ 0,
corroborating previous evidence on the existence of an upward
shift in mean productivity over this period. The data seem com-
patible with a wide range of break dates and break magnitudes
of approximately δ ∈ [0.5, 10], corresponding to a mean shift in
quarterly productivity of about 0.1–2.2 percentage points.

4.2. Autoregressive Root Near Unity

As a second illustration, consider inference about the largest
autoregressive root in a univariate autoregressive process

yt = μ+ ut , t = 1, . . . ,T
(1 − ρL)φ(L)ut = εt , (10)

where φ(z) = 1 − φ1z − . . .− φp−1zp−1, εt ∼ iid(0, σ 2) and
u0 = Op(1). The largest root ρ is close to unity, while the roots
of φ are all bounded away from the complex unit circle. As in
Phillips (1987) and Chan and Wei (1987) and a large subse-
quent literature, consider asymptotics with ρ = ρT = 1 − θ̃/T
for some fixed θ̃ , which yield accurate approximations to the

small sampling distribution of statistics computed from (10)
when ρ is close to 1.

The appropriate limit experiment under εt ∼ iidN (0, σ 2) in
the sense of LeCam involves observing theOrnstein–Uhlenbeck
process X on the unit interval, where X (s) = ∫ s

0 exp[−θ̃ (s −
r)]dW (r)withW (r) being a standardWiener process. The den-
sity of X relative to the measure of a standard Wiener process is
given by

p(x|θ̃ ) = exp
[
−θ̃

∫ 1

0
x(s)dx(s)− 1

2 θ̃
2
∫ 1

0
x(s)2ds

]
. (11)

While the exponent in (11) is a quadratic function of θ̃ , so that
the likelihood has a Gaussian shape, inference about θ̃ based
on X is nevertheless a nonstandard problem, since the infor-
mation

∫ 1
0 X (s)2ds is random (and correlated with the score∫ 1

0 X (s)dW (s)). Sims (1988) and Sims and Uhlig (1991) dis-
cussed how these features affect conditional properties of infer-
ence, and argue for the desirability of a Bayesian perspective in
the near unit root model.

A large number of procedures have been derived to con-
struct confidence sets for ρ near unity in (10), which correspond
to a particular confidence set construction for θ̃ in the limit-
ing experiment of observing X ; see, for instance, Stock (1991),
Andrews (1993), Andrews and Chen (1994), Hansen (1999),
Elliott and Stock (2001), and Mikusheva (2007). An important
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Figure . Autoregressive root: Priors that induce average frequentist coverage of constrained HPD set.

application of inference about ρ arises in international eco-
nomics: the theory of purchasing power parity (PPP) implies
that real exchange rates are mean reverting, and the value of ρ
governs the half-life of deviations of this long-run equilibrium.
SeeMurray and Papell (2002), Gospodinov (2004), Rossi (2005),
and Lopez, Murray, and Papell (2013) for additional methods
and empirical evidence.

We follow Lopez, Murray, and Papell (2013) and impose
ρ ≤ 1, so that the parameter space in the limiting problem
becomes �̃ = [0,∞).We apply the “guess and verify” construc-
tion of Section 2.3.4 above, with �̃m

j = [80( j−1
m−1 )

2, 80( j
m−1 )

2)

for j = 1, . . . ,m − 1, �̃S = [80,∞), and the prior �̄m(θ̃ , πm)

normalized to 1 on �̃S. Figure 2 displays �̄m(θ̃ , πm	) for m ∈
{11, 51, 201, 501}. The global shape of �̄m(θ̃ , πm	) is seen to
be quite similar for all considered values ofm. Pointwise cover-
age for θ̃ ∈ �̃ is between 0.897–0.963 for m = 11, 0.939–0.955

form = 51, 0.946–0.951 form = 201, and 0.948–0.951 form =
501. For all m, the priors �̄m(θ̃ , πm	) put much more mass on
small values of θ̃ , counteracting the well-known positive bias of
the peak of the likelihood, that is the downward bias of theMLE
of ρ. Unreported results show that if one casts the small sample
problem of inference about ρ in the asymptotic form (11), and
applies the prior of Figure 2 withm = 501, then one obtains an
HPD set with frequentist coverage close to the nominal level also
in small samples.

Table 1 reports the empirical results of Lopez, Murray, and
Papell (2013) for the largest autoregressive root of nine real
exchange rates relative to the U.S., along with our HPD set for
m = 501. The HPD set is numerically very close to what is
obtained by Lopez, Murray, and Papell (2013), suggesting that
at least for these data, their description of uncertainty about ρ
also has reasonable conditional properties. Interestingly, even

Table . % confidence sets for largest autoregressive root in real exchange rates.

Country Sample Lopez et al. ES Hansen HPD

Australia – [., .] [., .] [., .] [., .]
Belgium – [., .] [., .] [., .] [., .]
Finland – [., .] [., .] [., .] [., .]
Germany – [., .] [., .] [., .] [., .]
Italy – [., .] [., .] [., .] [., .]
Netherlands – [., .] [., .] [., .] [., .]
Spain – [., .] [., .] [., .] [., .]
Sweden – [., .] [., .] [., .] [., .]
UK – [., .] [., .] [., .] [., .]

Notes: The data and the Lopez et al. (), Elliott and Stock () (ES), and Hansen () intervals are from Tables  and  in Lopez et al. ().



1240 U. K. MÜLLER AND A. NORETS

though the prior peaks at θ̃ = 0, the HPD set does not include
the value of unity for any of nine series (the upper point of
the interval for Germany is 0.998), reflecting some evidence
for (weak) mean reversion. The three methods considered by
Lopez, Murray, and Papell (2013) all amount to inverting 5%
level two-sided hypothesis tests with substantial null rejection
probability on both sides for all hypothesized values of θ̃ . In con-
trast, the 5% level hypothesis tests corresponding to the HPD
set become essentially one-sided for θ̃ close to 0. The 5% level
DF-GLS unit root test of Elliott, Rothenberg, and Stock (1996)
does reject the unit root null hypothesis θ̃ = 0 for all series, so
our empirical results in that regard do not contradict what is
obtained by standard frequentist reasoning.

As reviewed above, the literature has developed a large
number of confidence sets for the largest autoregressive root.
Traditional frequentist objectives, such as unbiasedness, short
expected length, or maximizing the probability of excluding
wrong parameter values are not easily implemented, and they
do not pin down a unique set. What is more, as stressed in Sims
(1988) and Sims and Uhlig (1991), an exclusive concern for fre-
quentist properties might lead to unappealing conditional prop-
erties. Researchers famously expressed opposing frequentist and
Bayesian views on near-unit root econometrics in the 1991Oct.-
Dec. issue of the Journal of Applied Econometrics. In this context,
the approach to set estimation developedhere seemsparticularly
attractive: the determination of the coverage inducing prior is a
fairly straightforward numerical problem, and the resulting set
estimator has appealing frequentist and conditional properties
by construction.

5. Conclusion

In non-LAN inference problems, frequentist and Bayesian set
estimators do not generally coincide, even in large samples. Such
problems thus bring to the forefront the different underlying
rationales of classical and Bayesian inference. We prove in this
article that it is always possible to reconcile these two perspec-
tives for set estimation: there generically exists a prior that turns
a 1 − α credible set into a 1 − α confidence set, so it is possi-
ble “to have it both ways.” What is more, if the set estimation
concerns the entire parameter vector, then the HPD set with
coverage inducing prior is always similar and length optimal.
This suggests a practical and potentially powerful approach to
set estimation in nonstandard inference problems.

SupplementaryMaterials

The online supplement contains the appendices for the article.
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