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This paper considers Bayesian nonparametric estimation of conditional densities
by countable mixtures of location-scale densities with covariate dependent mixing
probabilities. The mixing probabilities are modeled in two ways. First, we consider
finite covariate dependent mixture models, in which the mixing probabilities are
proportional to a product of a constant and a kernel and a prior on the number of
mixture components is specified. Second, we consider kernel stick-breaking pro-
cesses for modeling the mixing probabilities. We show that the posterior in these
two models is weakly and strongly consistent for a large class of data-generating
processes. A simulation study conducted in the paper demonstrates that the models
can perform well in small samples.

1. INTRODUCTION

The estimation of conditional distributions is an important problem in empiri-
cal economics. It is often desirable to estimate not only the effect of covariates
on the average of outcomes but also how the whole distribution of outcomes de-
pends on covariates. Relevant classical semi- and nonparametric methods, such as
quantile regression, kernel smoothing, and sieves, are widely used in economet-
rics. Yatchew (1998), Koenker and Hallock (2001), DiNardo and Tobias (2001),
Ichimura and Todd (2007), and Chen (2007) provide surveys of methodological
and applied work. Typical applications include estimation of how distributions of
wages, prices, and costs depend on covariates. In time series settings, nonparamet-
ric estimation of conditional densities is useful for forecasting; see the literature
survey in Fan (2005).

The use of Bayesian nonparametric models is less common, especially in
methodological econometric research. However, Bayesian nonparametric meth-
ods have a number of attractive properties. First, they never result in logical
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POSTERIORCONSISTENCY INCONDITIONALDENSITY ESTIMATION 607

inconsistencies such as crossing quantiles in quantile regression or negative
density estimates in higher-order kernel smoothing. Second, in the Bayesian
framework, it is straightforward to incorporate the uncertainty about param-
eter/density estimates in forecasting and, more generally, decision-making
problems. Third, prior information can be explicitly added to an estimation
procedure. Finally, Bayesian nonparametric methods have been proved to pos-
sess excellent frequentist properties in several important problems. For exam-
ple, Rousseau (2010) and Kruijer, Rousseau, and van der Vaart (2010) show
that in univariate density estimation, Bayesian models based on mixtures of
distributions automatically adapt to the smoothness of the target density and de-
liver minimax convergence rates up to a logarithmic factor. They also demon-
strate that there is no need to select sample-size-dependent tuning parameters
such as bandwidth to achieve the optimal convergence rates. See also van der
Vaart and van Zanten (2009) for similar results for priors based on Gaussian
processes.

The econometrics literature on Bayesian nonparametric conditional density
estimation includes papers by Geweke and Keane (2007), Villani, Kohn, and
Giordani (2009), Li, Villani, and Kohn (2010), Tran, Nott, and Kohn (2012), and
Villani, Kohn, and Nott (2012), among others. Typical applications in these pa-
pers are estimation of the distribution of earnings and firms’ leverage ratios and
forecasting stock returns and inflation. These authors develop estimation meth-
ods, conduct Monte Carlo experiments, and provide assessment of out-of-sample
performance for several different model specifications. Many other specifications
have also been suggested in statistics in references provided below. However,
there is little theoretical guidance on what specifications are preferable or at least
guaranteed to work well in large samples. A widely accepted minimal requirement
for large-sample behavior of Bayesian nonparametric models is posterior consis-
tency (see Ghosh and Ramamoorthi, 2003, for a textbook treatment). Posterior
consistency means that in a frequentist thought experiment with a fixed (possibly
infinite-dimensional) parameter of a data-generating process (DGP), the posterior
concentrates around this fixed parameter as the sample size increases. The ben-
efits of posterior consistency from the Bayesian perspective are at least twofold.
First, it means that the prior is not dogmatic and can be overwhelmed by the data.
Second, it ensures that Bayesians with different priors agree when the sample is
sufficiently large. In this paper, we demonstrate posterior consistency for several
nonparametric models for conditional densities and, thus, provide a validation for
their use in applications.

There are two alternative approaches to modeling conditional densities in the
Bayesian framework. First, the conditional distributions of interest can be ob-
tained as a byproduct of the joint distribution estimation. Second, the conditional
distribution can be modeled directly and the marginal distribution of the covariates
can be left unspecified. Bayesian nonparametric modeling of densities involves
specifying a flexible prior on the space of densities. The theory of posterior consis-
tency for (unconditional) density estimation is well developed. However, if only
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608 ANDRIY NORETS AND JUSTINAS PELENIS

conditional density is of interest, modeling the marginal distribution of covariates
is unnecessary. Also, it is not clear how to select covariates, which is useful in
applications, when the joint distribution is estimated. While there are many pro-
posed methods for direct conditional density estimation, their consistency prop-
erties are largely unknown. We address this gap in the literature by demonstrating
consistency for Bayesian nonparametric procedures based on countable mixtures
of location-scale densities with covariate dependent mixing probabilities. The
mixing probabilities are modeled in two ways. First, we consider finite covari-
ate dependent mixture models, in which the mixing probabilities are proportional
to a product of a constant and a kernel and a prior on the number of mixture com-
ponents is specified. Second, we consider the kernel stick-breaking processes of
Dunson and Park (2008) for modeling the mixing probabilities. We show that the
posterior in these two models is weakly and strongly consistent for a large class
of DGPs. Below, we provide a more detailed overview of the literature and our
contribution.

There are several important classes of priors that are used in the Bayesian
nonparametric literature. One approach to nonparametric density estimation is
based on Gaussian process priors; see, for example, Tokdar and Ghosh (2007),
Tokdar (2007), van der Vaart and van Zanten (2008), Liang, Carlin, and Gelfand
(2009), and Tokdar, Zhu and Ghosh (2010). These priors are not considered in
our paper. Priors based on mixtures of distributions play an important role in the
applied and theoretical literature on Bayesian nonparametric density estimation.
A commonly used prior for the mixing distribution is the Dirichlet process prior
introduced by Ferguson (1973). Markov Chain Monte Carlo (MCMC) estima-
tion methods for these models were developed by Escobar (1994) and Escobar
and West (1995), who used a Polya urn representation of the Dirichlet process
from Blackwell and MacQueen (1973) (see Dey, Muller, and Sinha, 1998, for
a more extensive list of references and applications). An alternative approach
to modeling mixing distributions is to consider finite mixture models and de-
fine a prior on the number of mixture components (references on finite mix-
ture models can be found in a comprehensive book by McLachlan and Peel,
2000).

A general weak posterior consistency theorem for density estimation was es-
tablished by Schwartz (1965). Barron (1988), Barron, Schervish, and Wasserman
(1999), and Ghosal et al. (1999) developed a theory of strong posterior consis-
tency. The latter authors demonstrated that the theory applies to Dirichlet pro-
cess mixtures of normals, which is often used in practice. Tokdar (2006) relaxed
some of their sufficient conditions in the context of the Dirichlet process mixture
of normals. An alternative approach to consistency was introduced by Walker
(2004). Ghosal and Tang (2006) used this approach to obtain posterior consis-
tency for Markov processes. Zeevi and Meir (1997), Genovese and Wasserman
(2000), Roeder and Wasserman (1997), and Li and Barron (1999) also obtained
approximation and classical and Bayesian consistency results for mixture models.
Posterior convergence rates for mixture models were obtained by Ghosal, Ghosh,
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POSTERIORCONSISTENCY INCONDITIONALDENSITY ESTIMATION 609

and van der Vaart (2000) and Kruijer et al. (2010), among others. Wu and Ghosal
(2010) and Norets and Pelenis (2012) considered consistency in estimation of
multivariate densities.

Muller, Erkanli, and West (1996), Roeder and Wasserman (1997), Norets and
Pelenis (2012), and Taddy and Kottas (2010) suggested obtaining conditional den-
sities of interest from joint distribution estimation. MacEachern (1999), De Iorio,
Muller, Rosner, and MacEachern (2004), Griffin and Steel (2006), Dunson and
Park (2008), and Chung and Dunson (2009), among others, developed depen-
dent Dirichlet processes in which conditional distribution is modeled as a mixture
with covariate dependent mixing distribution and possibly covariate dependent
means and variances of the mixed distributions. There are alternative approaches
to modeling conditional distributions directly that are based on finite covariate
dependent mixtures known in the literature as mixtures of experts and smoothly
mixing regressions (Jacobs, Jordan, Nowlan, and Hinton, 1991; Jordan and Xu,
1995; Peng, Jacobs, and Tanner, 1996; Wood, Jiang, and Tanner, 2002; Geweke
and Keane, 2007; Villani et al., 2009; and Norets, 2010).

Posterior consistency results for direct conditional density estimation are
scarce. Norets (2010) shows that large nonparametric classes of conditional den-
sities can be approximated in the Kullback-Leibler distance by three different
specifications of finite mixtures of normal densities: (i) Only means of the mixed
normals depend flexibly on covariates; (ii) only mixing probabilities depend flex-
ibly on covariates; and (iii) only mixing probabilities modeled by multinomial
logit model depend on covariates. Schwartz’s (1965) theory suggests that these
Kullback-Leibler approximation results imply posterior consistency in a weak
topology norm. Pati, Dunson, and Tokdar (2013) specify dependent Dirichlet pro-
cesses that are similar to specifications (i) and (ii) of Norets (2010) and demon-
strate weak and strong posterior consistency. They use Gaussian processes to
specify flexible priors for mixing probabilities (for specification (ii)) and means
of normals (for specification (i)).

Relative to Norets (2010) and Pati et al. (2013), our contribution is fivefold.
First, we generalize Kullback-Leibler approximation results from Norets to finite
mixture specifications in which mixing probabilities are proportional to a general
kernel multiplied by a constant. We will call such a mixture specification ker-
nel mixture (KM). Second, we prove weak and strong posterior consistency for
kernel mixtures combined with a prior on the number of mixture components.
Third, we show that the kernel stick-breaking processes introduced by Dunson
and Park (2008) can approximate kernel mixtures. Fourth, we obtain weak and
strong posterior consistency results for the kernel stick-breaking mixtures. Fifth,
our weak and strong posterior consistency results hold for mixtures of general
location-scale densities.

While approximation and weak posterior consistency results for kernel mix-
tures could be anticipated from the results of Norets (2010), the approximation
and consistency results for kernel stick-breaking mixtures seem to be novel. We
show that it is not necessary to use fully flexible in covariates components in the
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610 ANDRIY NORETS AND JUSTINAS PELENIS

stick-breaking process as in Pati et al. (2013), and it is sufficient to use kernels
instead, which are fixed, known functions that depend on finite dimensional loca-
tion and scale parameters.

The regularity conditions on the DGP that we assume in proving weak and
strong posterior consistency are very mild. Assumptions about the prior for the
location and scale parameters of the mixed densities employed in showing strong
posterior consistency are similar under both types of mixing. Standard normal
priors for locations and inverse gamma for squared scales satisfy the assump-
tions. Although the parameters entering the mixing probabilities under two types
of mixing are the same, the priors on these parameters might have to be differ-
ent in the two models if strong posterior consistency is desired. For kernel mix-
tures there are no restrictions on the prior for constants multiplying the kernels.
For stick-breaking mixtures these constants are assumed to have a prior that puts
more mass on values close to 1. The only restriction on the prior for locations
of the mixing probability kernels is that its support has to cover the space for
covariates.

The organization of the paper is as follows: Section 2 defines weak and strong
posterior consistency for conditional densities and presents general theoretical
results that are used later in the paper. Posterior consistency results for kernel
mixtures are given in Section 3. Section 4 covers kernel stick-breaking mixtures.
Section 5 discusses generalizations of models defined in Sections 3–4. The fi-
nite sample performance of the models is evaluated in simulation exercises in
Section 6. Section 7 concludes.

2. THE NOTION OF POSTERIOR CONSISTENCY FOR CONDITIONAL
DENSITIES

Consider a product space Y × X , Y ⊂ R and X ⊂ Rdx . Let F = {
f : Y × X →

[0,∞),
∫

Y f (y|x)dy = 1
}

be the set of all conditional densities on Y with respect
to the Lebesgue measure. Let us denote the data-generating density of covariates
x with respect to some generic measure ν by f x

0 (x) and the data-generating con-
ditional density of interest by f0 ∈ F . The joint probability measure implied by
f0 and f x

0 (x) is denoted by F0.
To define a notion of posterior consistency, we need to define neighborhoods

on the space of conditional densities. The previous literature on Bayesian non-
parametric density estimation employed weak and strong topologies on spaces of
densities with respect to some common dominating measure. Quite general weak
and strong posterior consistency theorems were established (Schwartz, 1965;
Barron, 1988; Barron et al., 1999; Ghosal, Ghosh, and Ramamoorthi, 1999;
and Walker, 2004). It is possible to use these results if we define the distances
between conditional densities as the corresponding distances between the joint
densities, where the density of the covariates is equal to the data-generating
density f x

0 (x). For example, a distance between conditional densities f1, f2 ∈ F
that generates strong neighborhoods is defined by the total variation distance

terms of use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S026646661300042X
Downloaded from https:/www.cambridge.org/core. Brown University Library, on 26 Jun 2017 at 09:19:27, subject to the Cambridge Core

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S026646661300042X
https:/www.cambridge.org/core


POSTERIORCONSISTENCY INCONDITIONALDENSITY ESTIMATION 611

between the joint distributions,∫ ∣∣ f1 f x
0 − f2 f x

0

∣∣ =
∫ ∣∣ f1(y|x) f x

0 (x)− f2(y|x) f x
0 (x)

∣∣dydν(x).

A distance that generates weak neighborhoods for conditional densities can
be defined similarly (an explicit expression for the distance generating weak
topology can be found in Billingsley, 1999). Equivalently, one can define a weak
neighborhood of f0 ∈ F as a set containing a set of the form

U =
{

f ∈ F :

∣∣∣∣∫ gi f f x
0 −

∫
gi f0 f x

0

∣∣∣∣ < ε, i = 1,2, . . . ,k

}
,

where gi ’s are bounded continuous functions on Y × X .
For ε > 0 define a Kullback-Leibler neighborhood of f0 as

Kε( f0) =
{

f ∈ F :
∫

log
f0(y|x)

f (y|x)
d F0(y, x) =

∫
log

f0(y|x) f x
0 (x)

f (y|x) f x
0 (x)

d F0(y, x) < ε

}
.

Similarly defined integrated total variation and Kullback-Leibler distances for
conditional densities were considered in Ghosal and Tang (2006) and Norets and
Pelenis (2012).

Since we are interested only in conditional distributions, we specify a prior
on F . The corresponding posterior given data (XT ,YT ) = (x1, y1, . . . , xT , yT ) is
denoted by �(·|XT ,YT ). In order to apply posterior consistency theorems formu-
lated for joint densities, we can think of a prior � on F as a prior on the space of
joint densities on Y×X that puts probability 1 on f x

0 . The posterior of the condi-
tional density does not involve f x

0 ; f x
0 plays a role only in the proof of posterior

consistency.
The following weak posterior consistency theorem is an immediate implication

of Schwartz’s theorem.

THEOREM 2.1. If �(Kε( f0)) > 0 for any ε > 0, then the corresponding pos-
terior is weakly consistent at f0: For any weak neighborhood U of f0,

�(U |YT , XT ) → 1, a.s. F∞
0 .

The proof of the theorem is exactly the same as the proof of Schwartz’s the-
orem and its implications (see Ghosh and Ramamoorthi (2003) for a textbook
treatment).

To show strong posterior consistency we use a theorem from Ghosal et al.
(1999). To state the theorem we need a notion of the L1-metric entropy. Let
A ⊂ F . For δ > 0, the L1-metric entropy J (δ, A) is defined as the logarithm
of the minimum of all k such that there exist f1, . . . , fk in F with the property
A ⊂ ∪k

i=1

{
f :

∫ | f − fi | f x
0 < δ

}
.

THEOREM 2.2. Suppose �(Kε( f0)) > 0 for any ε > 0. Let U = { f :
∫ | f −

f0| f x
0 < ε}. If for given ε > 0 there is a δ < ε/4, c1,c2 > 0, β < ε2/8 and Fn ⊂F

such that for all n large enough;
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612 ANDRIY NORETS AND JUSTINAS PELENIS

(i) �(Fc
n ) < c1 exp{−c2n} and

(ii) J (δ,Fn) < βn,

then �(U |YT , XT ) → 1, almost surely (a.s.) F∞
0 .

The proof of the theorem is exactly the same as the proof of Theorem 2 in
Ghosal et al. (1999). In the following sections we use these weak and strong pos-
terior consistency theorems to demonstrate consistency for countable covariate
dependent location-scale mixtures.

3. KERNEL MIXTURES WITH A VARIABLE NUMBER
OF COMPONENTS

Consider the model for a conditional density,

p(y|x,θ,m) = ∑m
j=1 αj K

(− Qj ||x −qj ||2
)
φ
(

y,μj ,σj
)

∑m
i=1 αi K

(− Qi ||x −qi ||2
) , (3.1)

where φ(y,μ,σ ) is a fixed symmetric density with location μ and scale σ eval-
uated at y and K (·) is a fixed positive function, for example, K (·) = exp(·).
The prior on the space of conditional densities is defined by a prior distribu-
tion for a positive integer m (the number of mixture components) and θ ={

Qj ,μj ,σj ,qj ,αj
}∞

j=1 ∈ � = (R+ ×Y × R+ × X × (0,1))∞, where Qj ∈ R+,
μj ∈ Y , σj ∈ R+, qj ∈ X , and αj ∈ (0,1). Also, let θ1:m = {Qj ,μj ,σj ,qj ,αj }m

j=1
and note that p(y|x,θ,m) = p(y|x,θ1:m,m). In a slight abuse of notation, �(·)
and �(·|XT ,YT ) will denote the prior and the posterior on the space of condi-
tional densities and, equivalently, on �×{1,2, . . . ,∞}.

3.1. Weak Consistency

We impose the following assumption on the DGP.

Assumption 3.1.

(i) X = [0,1]dx (the arguments would go through for a bounded X ).

(ii) f0(y|x) is continuous in (y, x) a.s. F0.

(iii) There exists r > 0 such that∫
log

f0(y|x)

inf||z−y||≤r, ||t−x ||≤r f0(z|t) F0(dy,dx) < ∞. (3.2)

The condition in (3.2) requires logged relative changes in f0(y|x) to be finite
on average. The condition also implies that f0(y|x) is positive for any x ∈ X and
y ∈ R. The condition can be modified to accommodate bounded support of y; see
Norets (2010) (this generalization is not pursued here to simplify the notation).
Norets shows that Laplace and Student’s t-distributions with covariate dependent
parameters as well as nonparametrically specified DGPs satisfy this assumption.
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POSTERIORCONSISTENCY INCONDITIONALDENSITY ESTIMATION 613

The assumption of the bounded support for covariates seems difficult to relax.
In the following Kullback-Leibler distance approximation result (Theorem 3.1),
we need an integrable upper bound on the logarithm of the ratio of the data-
generating density and the model density. The boundedness of covariates plays
an important role in obtaining such a bound. One way to apply our theoretical
results to the data with unbounded covariates is to transform the covariates. In this
case, the condition in (3.2) is admittedly stronger but still could be satisfied; for
example, it holds when the true conditional density is normal with the mean equal
to a uniformly bounded function of covariates. Another way to handle unbounded
covariates is to estimate the conditional density on a bounded subset of the support
of the covariates.

We also make the following assumption about the location-scale density φ.

Assumption 3.2.

(i) φ(y,μ,σ ) = σ−1ψ((y − μ)/σ), where ψ(z) is a bounded, continuous,
symmetric around zero, and monotone decreasing in |z| probability density.

(ii) For any μ and σ > 0, logφ(y,μ,σ ) is integrable with respect to F0.

A standard normal density satisfies this assumption as long as the second mo-
ments of y are finite. A Laplace density also satisfies this assumption if the first
moments of y are finite. The condition seems to imply that to estimate f0(y|x)
by mixtures, one needs to mix densities with tails that are not too thin relative to
f0(y|x).

We also make the following assumption about the kernel K (·).
Assumption 3.3. The kernel K (·) is positive, bounded above, continuous,

nondecreasing, and has a bounded derivative on (−∞,0]. The upper bound
can be set to 1 and, thus, 1 ≥ K (z) > 0 for z ∈ (−∞,0]. Also, we assume
ndx /2 K (−2n)/K (−n) → 0 as n → ∞.

An exponential kernel K (z) = exp(z) satisfies the assumption. The following
theorem is a generalization of Proposition 4.1 in Norets (2010).

THEOREM 3.1. If Assumptions 3.1–3.3 hold, then for any ε > 0 there exist m
and θ1:m = {Qj ,μj ,σj ,qj ,αj }m

j=1 such that∫
log

f0(y|x)

p(y|x,θ1:m,m)
d F0(y, x) < ε.

The theorem is proved in Appendix A. The intuition behind the proof is as
follows. For a fixed x , the conditional density can be approximated by a finite
location-scale mixture. The mixing probabilities in the approximation depend
continuously on x . These continuous mixing probabilities can be approximated
by step functions (sums of products of indicator functions and constants). The
indicator functions in turn can be approximated by K (·), which gives rise to an
expression in (3.1) after a normalization. The following corollary shows that the
approximation stays good in a sufficiently small neighborhood of θ1:m .
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614 ANDRIY NORETS AND JUSTINAS PELENIS

COROLLARY 3.1. Suppose Assumptions 3.1–3.3 hold. Then, for a given
ε > 0 there are m and an open neighborhood �m such that for any θ1:m ∈ �m,∫

log
f0(y|x)

p(y|x,θ1:m,m)
d F0(y, x) < ε.

Proof. By Theorem 3.1, there exist m and θ̃1:m such that∫
log

f0(y|x)

p(y|x, θ̃1:m,m)
d F0(y, x) < ε/2.

For any θ1:m ,∫
log

f0(y|x)

p(y|x,θ1:m,m)
d F0(y, x) =

∫
log

f0(y|x)

p(y|x, θ̃1:m,m)
d F0(y, x)

+
∫

log
p(y|x, θ̃1:m,m)

p(y|x,θ1:m,m)
d F0(y, x).

The first part of the right-hand side (r.h.s) of this equality is bounded above by ε/2.
It suffices to show that the second part is continuous in θ1:m at θ̃1:m . Let θn

1:m be
a sequence of parameter values converging to some θ̃1:m as n → ∞. For every y,
p(y|x, θ̃1:m,m)/p(y|x,θn

1:m,m) → 1. The result will follow from the dominated
convergence theorem if there is an integrable (with respect to F0) upper bound on
| log p(y|x,θn

1:m,m)|. Since θn
1:m → θ̃1:m , μn

j ∈ (μ,μ) and σ n
j ∈ (σ ,σ ) for some

finite μ, μ, σ > 0, and σ for all sufficiently large n. From Assumption 3.2,

ψ(0)

σ
≥ p

(
y|x,θn

1:m

) ≥ 1(−∞,μ)(y)ψ( y−μ
σ )+1(μ,∞)(y)ψ(

y−μ

σ )+1[μ,μ](y)ψ(
μ−μ

σ )

σ
.

(3.3)

The upper bound in (3.3) is a constant, and the logarithm of the lower bound is
integrable by part (ii) of Assumption 3.2. n

The corollary combined with a prior that puts positive mass on open neighbor-
hoods essentially states that the Kullback-Leibler (KL) property holds: The prior
probabilities of the Kullback-Leibler neighborhoods of the data-generating den-
sity f0(y|x) f x

0 (x) have positive prior probability, where the prior on the density
of x puts probability one on f x

0 and the prior for conditional densities is defined
by � introduced above. By Theorem 2.1, the KL property immediately implies
the following weak posterior consistency theorem.

THEOREM 3.2. Suppose

(i) Assumptions 3.1–3.3 hold.

(ii) For any m, θ1:m and an open neighborhood of θ1:m, �m, �(θ̃1:m ∈
�m,m) > 0.
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Then for any weak neighborhood U of f0(y|x),

�(U |YT , XT ) → 1, a.s. F∞
0 .

3.2. Strong Consistency

A natural way to define a sieve Fn on F for application of Theorem 2.2, for
which bounds on prior probabilities �(Fc

n ) can be easily calculated, is to consider
densities p(y|x,θ,m) where m and θ are restricted in some way. To obtain a finite
value for the L1-metric entropy, one at least has to restrict components of θ to a
bounded set. Thus, let us define

Fn ={p(y|x,θ,m) : |μj | ≤ μn, Qj ≤ Qn, σ n < σj < σ n, 1 ≤ j ≤ m, m ≤ mn}.
We calculate a bound on J (δ,Fn) in the following proposition.

PROPOSITION 3.1. Suppose Assumptions 3.2 and 3.3 hold. Then

J (δ,Fn) ≤ mn

(
log

[
b0

μn

σ n
+b1 log

σ n

σ n
+1

]
+b2 +b3 log Qn +b4 log K

(−Qndx
))

,

(3.4)

where b0, b1, b2, b3, and b4 depend on δ but not on mn, Qn, μn, σ n, and σ n.

A proof is provided in Appendix A. In addition to addressing the case of covari-
ate dependent mixing probabilities, the proposition shows that the entropy bounds
derived in Ghosal et al. (1999) and Tokdar (2006) for mixtures of normal densities
hold for mixtures of general location-scale densities. The next theorem formulates
sufficient conditions for strong posterior consistency.

THEOREM 3.3. Suppose

(i) A priori (μj ,σj , Qj ) are independent and identically distributed (i.i.d.)
across j and independent from other parameters of the model.

(ii) For any ε > 0, there exist δ < ε/4, β < ε2/8, positive constants c1 and c2,
and sequences mn, Qn, μn, σ n ↑ ∞, and σ n ↓ 0 with σ n > σ n such that

mn
[
�(|μj | > μn)+�

(
σ n > σj

)+�
(
σj > σ n

)+�(Qj > Qn)
]

+�(m > mn) ≤ c1e−c2n, (3.5)

mn

(
log

[
b0

μn

σ n
+b1 log

σ n

σ n
+1

]
+b2 +b3 log Qn

+b4 log K
(−Qndx

))
< nβ, (3.6)

where constants (b0, . . . ,b4) are defined in Proposition 3.1.

(iii) The conditions of Theorem 3.2 hold.

Then the posterior is strongly consistent at f0.
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616 ANDRIY NORETS AND JUSTINAS PELENIS

Theorem 3.3 is a direct consequence of Theorem 2.2. Possible choices of prior
distributions and sieve parameters that satisfy the conditions of the theorem are
presented in the following example.

Example 3.1
Consider K (z) = exp(z). Let μn = √

n, σ n = 1/
√

n, σ n = en , and Qn = √
n. Then

condition (3.6) is satisfied for mn = c
√

n, where c > 0 is a sufficiently small con-
stant. Next let us choose prior distributions for (μj ,σj , Qj ) so that condition (3.5)
holds. For a normal prior on μj , �(|μj | > μn) < c1e−c2n for some c1 and c2. For
an inverse gamma prior on σj we will show that �(σ n > σj ) + �(σj > σ n) <
c1e−c2n for n large enough and some c1 and c2. For n large enough,

�(σ 2
n > σ 2

j )+�(σ 2
j > σ 2

n) = const ·
(∫ 1/n

0
x−α−1e−β/x dx +

∫ ∞
e2n

x−α−1e−β/x dx

)
≤ const ·

(∫ 1/n

0
(1/n)−α−1e−β/(1/n)dx +

∫ ∞
e2n

x−α−1dx

)
= const ·

(
nαe−βn + e−2αn/α

)
< c1e−nc2 ,

as desired. Let m = m̃� and choose a Weibull prior with shape parameter k ≥ 2
for m̃ and Qj ; then (3.5) is satisfied. Alternative choices of prior distributions and
sequences are possible as well.

4. KERNEL STICK-BREAKING MIXTURES

For a location-scale mixture model to have a large support, the mixing distribu-
tion has to have at least countably infinite support. In the previous section we
defined countable mixtures by specifying a prior on the number of mixture com-
ponents that has support on positive integers. Estimation of such models by re-
versible jump MCMC methods is feasible (Green, 1995); however, it could be
complicated. A popular alternative for countable mixtures is Dirichlet process
prior mixtures. A stick-breaking representation of the Dirichlet process intro-
duced by Sethuraman (1994) proved to be especially convenient for specifying
countable covariate dependent mixtures. In this section, we consider the kernel
stick-breaking (KSB) mixture introduced by Dunson and Park (2008),

p(y|x,θ) =
∞
∑
j=1

πj (x)φ

(
y −μj

σj

)
, (4.1)

πj (x) = αj K
(
−Qj ||x −qj ||2

) j−1

∏
l=1

{
1−αl K

(
−Ql ||x −ql ||2

)}
,

where θ , K , and φ were defined in Section 3. Even though mixing probabilities
πj (x) look quite different from the mixing probabilities of KM in (3.1) we show
in the following proposition that KSB mixtures can approximate KMs.
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PROPOSITION 4.1. (i) For any m, θ K M ∈ �, and ε > 0 there exist θ K SB ∈ �
and n such that∫

log
p(y|x,θ K M ,m)

p(y|x,θ K SB
1:n )

d F0(y, x) < ε, (4.2)

where p(y|x,θK M ,m) is defined in (3.1) and p(y|x,θ K SB
1:n ) is a truncated version

of (4.1),

p
(

y|x,θ K SB
1:n

)
=

n

∑
j=1

πj (x)φ

(
y −μj

σj

)
.

(ii) Under Assumptions 3.1–3.3, (4.2) holds on an open neighborhood of θ K SB
1:n .

The proof of the proposition is in Appendix A. Using this approximation result,
we obtain weak and strong consistency in the following subsections.

4.1. Weak Consistency

To show that a KSB mixture is weakly consistent, we will prove that the KL
property holds.

PROPOSITION 4.2. Suppose Assumptions 3.1–3.3 hold and for any n, θ1:n,
and an open neighborhood of θ1:n, �n, �(θ̃1:n ∈ �n) > 0. Then for p(y|x,θ)
defined in (4.1) and any ε > 0,

�

(
θ :

∫
log

f0(y|x)

p(y|x,θ)
d F0(y, x) < ε

)
> 0.

Proof. By Theorem 3.1 there exist m and θ K M ∈ � such that∫
log

(
f0(y|x)/p

(
y|x,θ K M ,m

))
d F0(y, x) < ε/2.

By Proposition 4.1 there exist n, θ K SB
1:n , and an open neighborhood of θ K SB

1:n , �n ,
such that for any θ̃ K SB

1:n ∈ �n ,∫
log

(
p
(

y|x,θ K M ,m
)

/p
(

y|x, θ̃ K SB
1:n

))
d F0(y, x) < ε/2.

Let θ̃ K SB = (
θ̃ K SB

1:n , θ̃ K SB
n+1:∞

)∈ �, where θ̃ K SB
1:n ∈ �n and θ̃ K SB

n+1:∞ is an unrestricted

continuation of θ̃ K SB
1:n . Since p

(
y|x, θ̃ K SB

) ≥ p
(

y|x,θ K SB
1:n

)
,∫

log
f0(y|x)

p(y|x, θ̃ K SB)
d F0(y, x) ≤

∫
log

f0(y|x)

p(y|x,θ K M ,m)
d F0(y, x)

+
∫

log
p(y|x,θ K M ,m)

p(y|x,θ K SB
1:n )

d F0(y, x) < ε.

By the proposition, assumption �
(
θ̃ K SB

1:n ∈ �n
)

> 0 and the result follows. n
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618 ANDRIY NORETS AND JUSTINAS PELENIS

By Theorem 2.1 the KL property implies the following weak posterior consis-
tency theorem.

THEOREM 4.1. Under the assumptions of Proposition 4.2, for any weak
neighborhood U of f0(y|x),

�(U |YT , XT ) → 1, a.s. F∞
0 .

4.2. Strong Consistency

To apply Theorem 2.2, we define sieves as follows. For a given δ > 0 and a se-
quence mn , let

Fn=
{

p(y|x,θ):|μj | ≤ μn , Qj ≤ Qn , σ n < σj < σ n , j=1, . . . ,mn , sup
x∈X

∞
∑

j=mn+1
πj (x)≤δ

}
.

The restriction on the mixing probabilities in the sieve definition is similar to the
one used by Pati et al. (2013). We calculate a bound on the metric entropy of Fn

in the following proposition.

PROPOSITION 4.3. Suppose Assumptions 3.2 and 3.3 hold. Then

J (4δ,Fn) ≤ mn

(
log

[
b0

μn

σ n
+b1 log

σ n

σ n
+1

]
+b2 +b3 log Qn +b4 logmn

)
,

(4.3)

where b0, b1, b2, b3, and b4 depend on δ but not on n, mn, Qn, μn, σ n, and σ n.

A proof is given in Appendix A.
The next theorem formulates sufficient conditions for strong consistency.

THEOREM 4.2. Suppose

(i) A priori (αj ,μj ,σj , Qj ) are i.i.d. across j .

(ii) For any ε > 0, there exist δ < ε/16, β < ε2/8, constants c1,c2 > 0, and
sequences mn, Qn, μn, σ n ↑ ∞, and σ n ↓ 0 with σ n > σ n such that

mn
[
�(|μj | > μn)+�(σ n > σj )+�(σj > σ n)+�(Qj > Qn)

]
(4.4)

+�

(
sup
x∈X

∞
∑

j=mn+1
πj (x) > δ

)
≤ c1e−c2n,

mn

(
log

[
b0

μn

σ n
+b1 log

σ n

σ n
+1

]
+b2 +b3 log Qn +b4 logmn

)
< nβ,

(4.5)

where b0, b1, b2, b3, and b4 are defined by Proposition 4.3.

(iii) The conditions of Theorem 4.1 hold.

Then the posterior is strongly consistent at f0.
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Theorem 4.2 is a direct consequence of Theorem 2.2 and Proposition 4.3. The
difficulty in verifying the sufficient conditions of the theorem arises in finding a
prior distribution and sieve parameters that satisfy the requirements that

�

(
sup
x∈X

∞
∑

j=mn+1
πj (x) > δ

)
< c1e−nc2

and mn log Qn < nβ for n large enough, as this requires delicate handling
of mixing weights and prior distributions. Observe that ∑∞

j=mn+1 πj (x) =
∏mn

j=1(1−αj K(−Qj ||x −qj ||2)) and thus

�

(
sup
x∈X

∞
∑

j=mn+1
πj (x) > δ

)
≤ �

(
mn

∏
j=1

(1−αj Kj ) > δ

)
, (4.6)

where Kj = K(−Qj dx ) ≤ K(−Qj ||x − qj ||2)). The following lemma describes
priors for αj and Qj that imply an exponential bound on the r.h.s of (4.6).

LEMMA 4.1. If prior distributions of αj first-order stochastically dom-
inate Beta(1,γ ) and Kj = K (−Qj dx ) first-order stochastically dominates
Beta(γ +1,1) for any γ > 0, then

�θ

(
mn

∏
j=1

(1−αj Kj ) > δ

)
< e−0.5mn logmn .

The lemma is proved in Appendix A. With the result of the lemma, we are
ready to present an example of priors that satisfy the conditions of Theorem 4.2.

Example 4.1
Suppose priors for μ and σ and sequences μn , σ n , and σ n are the same as in
Example 3.1 (normal and inverse gamma priors). Then for mn = cn/ logn and
Qn = nr , where c and r are constants, condition (4.5) is satisfied for c sufficiently
small.

By Lemma 4.1 condition (4.4) is satisfied if the prior distributions for αj

first-order stochastically dominate Beta(1,γ ) and K(−Qj dx ) first-order stochas-
tically dominate Beta(γ + 1,1) for any γ > 0 (note that for mn = cn/ logn,
exp(−0.5mn logmn) ≤ exp(−0.25cn) for large enough n).

Explicit priors for Qj and αj satisfying the sufficient conditions can be
constructed for particular choices of K (·). For example, for K (·) = exp(·),
αj ∼ Beta(1,γ ) and Qj ∼ Exponential((γ + 1)dx ), which is equivalent to
Kj = exp(−Qj dx ) ∼ Beta(γ +1,1), satisfy the conditions of Lemma 4.1. Also,
�(Qj > nr ) ≤ c1e−nc2 for r ≥ 1.

5. COVARIATE DEPENDENT LOCATIONS

It has been suggested in the literature (Geweke and Keane (2007), Villani et al.
(2009)) that covariate dependent mixture models in which locations also depend
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620 ANDRIY NORETS AND JUSTINAS PELENIS

on covariates perform well in applications. It is not surprising that weak and strong
posterior consistency can be established for such models, as they are general-
izations of the models we considered above. Specifically, let z : X → Z ⊂ Rdz

denote a transformation of the original covariate x . For example, z(x) can be x
itself or include polynomials of x . Kernel mixtures and kernel stick-breaking mix-
tures with covariate dependent locations can be defined by (3.1) and (4.1) with μj

replaced by β ′
j z(x), where βj ∈ Rdz for each j . We make the following assump-

tion on the space Z and the function z to extend the consistency results to this
setup.

Assumption 5.1.

(i) Z = [0,1]dz ,

(ii) z(x)1 = 1 (the first coordinate) for any x ∈ X .

Under this assumption, each location-scale density can still have a constant
location, and all the theoretical results for models with constant locations μj

presented in Sections 3–4 hold for models with locations β ′
j z(x) with minor

modifications. Theorem A.1 in Appendix A provides the details. The theorem
implies that the priors from Examples 3.1 and 4.1, in which a normal prior
for μj is replaced by independent normal priors on components of βj , guar-
antee strong posterior consistency for models with covariate dependent loca-
tions.

6. FINITE SAMPLE PERFORMANCE

In this section we assess the finite sample performance of a Bayesian conditional
density estimator based on a kernel stick-breaking mixture prior. We do not con-
sider an estimator based on kernel mixtures from Section 3 because similar mod-
els have been extensively studied in the literature; see, for example, Geweke and
Keane (2007), Villani et al. (2009), and Norets and Pelenis (2012). First, we dis-
cuss the model setup and prior specification. Second, we present a graphical illus-
tration of the estimator performance and a comparison with a kernel smoothing
estimator for simulated data sets of different sizes. Third, we conduct Monte Carlo
studies comparing the KSB estimator and a kernel smoothing estimator for two
DGPs from the previous literature.

The model we use in the simulation exercises is a special case of the models
discussed in Section 5 with locations linear in covariates,

p(y|x,θ) =
∞
∑
j=1

αj K
(
−Qj ||x −qj ||2

) j−1

∏
l=1

{
1−αl K

(
−Ql ||x −ql ||2

)}
×φ

(
y −βj,0 −β ′

j,1x

σj

)
, (6.1)

where K (·) = exp(·) and φ is a normal density.
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The prior distribution we use is based on Example 4.1: βj ∼ N (μβ, H−1
β ),

σ 2
j ∼ I nvGamma(ν,bσ ), αj ∼ Beta(a,b), qj ∼ U (0,1), Qj ∼ Exponential(τ )

i.i.d. across j , where {μβ, Hβ,ν,bσ ,a,b,τ } are fixed hyperparameters. In ac-
tual applications, the values of hyperparameters can be selected to reflect the re-
searcher’s beliefs about the density. We use data dependent values,

μβ = (y,0)′, Hβ = diag
(

0.5/σ̂ 2
y ,1

)
, ν = 3, bσ = 2/σ̂ 2

y , a = 1, b = 0.5, τ = 1.5,

(6.2)

where y and σ̂ 2
y are the sample mean and variance. Parameters {βj }∞j=1 control

the impact of covariates on the response for each location-scale density, and val-
ues of (μβ, Hβ) are chosen so that observed values of y are plausible. Parameters
{σ 2

j }∞j=1 control the variance in each mixture component and, thus, should reflect
the range of observable y at possible covariate values. The values of hyperparam-
eters (ν,bσ ) are chosen so that the observed variances of the response variable are
plausible. Parameters {αj , Qj }∞j=1 control the expected number of mixture compo-
nents and borrowing of information across covariates. Values of (a,b) that imply
a prior for αj concentrating near 1 lead to mixtures with a smaller number of com-
ponents. Higher values of τ imply the prior for Qj concentrating near 0. Smaller
Qj in turn implies a smaller number of mixture components and more informa-
tion sharing across covariate values. Sufficient conditions for the strong consis-
tency are satisfied if a = 1 (a standard choice in the literature) and 1 +b ≤ τ/dx

(see Example 4.1, Lemma 4.1, and Section 5). It appear that large values of τ lead
to considerable oversmoothing. Thus, we suggest using low values of τ .

To estimate the model, we develop an MCMC algorithm based on slice sam-
pling (Neal, 2003; Walker, 2007) and retrospective sampling (Papaspiliopoulos
and Roberts, 2008; Papaspiliopoulos, 2008). The algorithm is described in detail
in Appendix B. To check the correctness of the algorithm design and implemen-
tation we used the joint distribution tests from Geweke (2004) and related tests
from Cook, Gelman, and Rubin (2006).

The first of the two DGPs we consider is taken from Section 5 of Dunson and
Park (2008): xi ∼ U [0,1] and the true conditional density is

f0(yi |xi ) = e−2xi N
(

yi ; xi ,0.12
)

+
(

1− e−2xi
)

N
(

yi ; x4
i ,0.22

)
. (6.3)

According to Dunson and Park (p. 315), this DGP is a “challenging example as
the shape of the conditional density changes rapidly, with limited sample size
in any particular local region.” Furthermore, the same setup for the simulation
exercise enables a comparison with the results in Dunson, Pillai, and Park (2007)
and Dunson and Park.

Figure 1 presents the DGP (6.3) conditional densities and posterior means of
the estimated conditional densities. Each column in the figure shows densities
conditional on a particular value of covariate x ∈ {0.25,0.5,0.75}. The rows cor-
respond to different sample sizes of the simulated data, N ∈ {200,500,2,000}.
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622 ANDRIY NORETS AND JUSTINAS PELENIS

FIGURE 1. Estimated conditional densities for different covariate values and sample sizes.
The solid lines are the true values, the dashed lines are the posterior means, and the dotted
lines are pointwise 99% equal-tailed credible intervals.

For estimation, we perform 400,000 MCMC iterations, of which the first 100,000
are discarded for burn-in. For plots, we use every 20th of the remaining iterations.
The separated partial means test for the first and second moments of the condi-
tional density draws suggests that the MCMC chains converge. The numerical
standard errors (NSEs) of conditional density estimates are less than 0.02 (the
average of NSEs over all (y, x) is 0.002). The fit is comparable to the results ob-
tained by Dunson and Park (2008) for a slightly different model. Note that for
larger sample sizes the width of posterior credible intervals is smaller, which is
expected from our posterior consistency results.

To assess the sensitivity of the estimation results with respect to prior speci-
fication, we repeated the estimation exercise with various modifications of prior
hyperparameters. In summary, prior hyperparameters (μβ, Hβ,ν,bσ ) do not seem
to affect the results as long as they imply a plausible range of response variables.
At the same time, hyperparameters (b,τ ) can have a considerable effect on the
estimation results. Smaller values of τ (and, thus, by Example 4.1, b) seem to
deliver better results, as they lead to stronger dependence of mixing weights on
covariates, which allows the model to accommodate sudden changes in condi-
tional densities in the DGP. The details of prior sensitivity analysis are delegated
to Appendix C.

Additionally, we compare the KSB model with the nonparametric kernel
smoothing method of Hall, Racine, and Li (2004) implemented by Hayfield and
Racine (2008) in the publicly available R package np. Figure 2 shows that the
estimation results for the DGP (6.3) from both approaches are pretty close.
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FIGURE 2. Estimated conditional densities for different covariate values and different
sample sizes. The solid lines are the true values, the dashed lines are the posterior means,
and the dotted lines are the kernel estimate of conditional densities p( y|x).

Furthermore, we conduct a Monte Carlo study to compare the two estimators.
For the DGP defined in equation (6.3), we simulated 100 samples of size N = 500.
For each sample, the performance of an estimator is evaluated by the root mean
squared error (RMSE) and the mean absolute error (MAE),

RMSE =

√√√√√∑
Ny
i=1 ∑Nx

j=1

(
f̂ (yi |xj )− f0(yi |xj )

)2

Ny Nx
,

MAE =
∑

Ny
i=1 ∑Nx

j=1

∣∣∣ f̂ (yi |xj )− f0(yi |xj )
∣∣∣

Ny Nx
,

where (yi , xj ) are evenly distributed grid points with yi ∈ {−0.88,
−0.84, . . . ,1.08} and xj ∈ {0.01,0.03, . . . ,0.99}. Table 1 provides the aver-
ages and the sample standard deviations of the RMSE and the MAE for the KSB
and the kernel smoothing methods and their ratios.

In this particular example, the KSB model outperforms the nonparametric ker-
nel smoothing method of Hall et al. (2004) by RMSE and MAE criteria.

We also conduct a Monte Carlo study for the DGP from Hall, Wolff, and Yao
(1999),

yi = 2sin(πxi )+ εi , (6.4)

where xi and εi are i.i.d random variables with a density 1−|x | on [−1,1]. Again,
we evaluate the relative performance by RMSE and MAE on evenly distributed
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TABLE 1. Monte Carlo study for DGP (6.3)

Method RMSE MAE
KSB 0.148(0.019) 0.085(0.011)
np 0.195(0.017) 0.109(0.010)

Ratio KSB/np 0.758(0.092) 0.784(0.101)

TABLE 2. Monte Carlo study for DGP (6.4)

Method RMSE MAE
KSB 0.149(0.010) 0.074(0.005)
np 0.119(0.017) 0.051(0.005)

Ratio KSB/np 1.270(0.176) 1.478(0.149)

grid points with yi ∈ {−2.94,−2.82, . . . ,2.94} and xj ∈ {−0.98,−0.94, . . . ,0.98}
for 100 random samples of size N = 500. The results are summarized in Table 2.

As can be seen from Tables 1 and 2, the kernel smoothing estimator outper-
forms the KSB estimator for the DGP in (6.4) by a margin similar to the one
by which the latter outperforms the former for the DGP in (6.3). These results
suggest that these two approaches have comparable small sample performance.

7. DISCUSSION

The regularity conditions on the DGP assumed in proving weak and strong
posterior consistency are very mild. The conditions require that the tails of
the mixed location-scale density not be too thin relative to the data-generating
density. They also require the local changes in the logged data-generating density
to be integrable.

Weak posterior consistency is proved under no special requirements on the
prior for parameters beyond conditions on the support (0 has to be in the sup-
port of the scale parameters, and the support of location parameters has to be
unbounded).

Assumptions about the prior for the location and scale parameters of the mixed
densities employed in showing strong posterior consistency are similar under both
types of mixing. They are in the spirit of the assumptions employed in previous
work on the estimation of unconditional densities. Examples of priors that satisfy
the assumptions include the normal priors for locations and inverse gamma for
squared scales commonly used in practice.

Although the parameters entering the mixing probabilities under the two types
of mixing are the same, the mixing probabilities are constructed differently. This
seems to require different priors for attaining strong posterior consistency under
the two types of mixing. For kernel mixtures with a variable number of com-
ponents, there are no restrictions on the constants multiplying the kernels. For
stick-breaking mixtures, these constants are assumed to have a prior that puts
more mass on values of the constants that are close to 1 (see Lemma 4.1). The in-
verse of the scales of the mixing probability kernels may have thicker tails under
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stick-breaking mixtures. The prior for locations of the mixing probability kernels
is not restricted under both types of mixing, which is not surprising given that the
space for covariates is assumed to be bounded.

It would be desirable to derive posterior convergence rates to get more insight
into covariate dependent mixture models. The techniques for obtaining bounds on
posterior convergence rates are similar to those for obtaining strong posterior con-
sistency (Ghosal et al., 2000). However, bounds on convergence rates are mostly
of interest if they are tight (for example, if they are close to minimax rates for
certain classes of DGPs). As we mention in the Introduction, the results of this
type were obtained for unconditional density estimation. In order to obtain such
results for our models, one needs to improve the Kullback-Leibler approximation
results from Section 3. We leave this problem to future research.
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APPENDIX A: Proofs

Proof (Theorem 3.1).
The theorem can be proved by exhibiting a sequence of m and θ1:m such that∫

log
f0(y|x)

p(y|x,θ,m)
d F0( y, x) → 0.

terms of use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S026646661300042X
Downloaded from https:/www.cambridge.org/core. Brown University Library, on 26 Jun 2017 at 09:19:27, subject to the Cambridge Core

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S026646661300042X
https:/www.cambridge.org/core


628 ANDRIY NORETS AND JUSTINAS PELENIS

Since dK L is always nonnegative,

0 ≤
∫

log
f0(y|x)

p(y|x,θ1:m,m)
F0(dy,dx) ≤

∫
logmax

{
1,

f0(y|x)

p(y|x,θ1:m,m)

}
F0(dy,dx).

Thus, it suffices to show that the last integral in the inequality above converges to zero
as m increases. The dominated convergence theorem (DCT) is used for that. First, we
demonstrate the pointwise convergence of the integrand to zero a.s. F0. Then, we present
an integrable upper bound on the integrand required by the DCT. To define m and θ1:m , we
first define partitions of Y and X .

Let Am
j , j = 0,1, . . . ,my , be a partition of Y consisting of adjacent half-open half-closed

intervals Am
1 , . . . , Am

my
with length hm and the rest of the space Am

0 . As m increases, the
fine part of the partition becomes finer, hm → 0, and my → ∞. Also, it covers larger and
larger parts of Y : For any y ∈ Y there exists M0 such that

∀m ≥ M0, Cδm ( y)∩ Am
0 = ∅, (A.1)

where Cδm (y) is an interval with center y and half-length δm → 0. It is al-
ways possible to construct such a partition. For example, if Y = (−∞,∞)
let Am

0 = (−∞,− logmy]∪[logmy ,∞), Am
j = [− logmy + 2( j − 1) logmy/my ,

− logmy +2 j logmy/my) for j �= 0, and hm = 2logmy/my .
Let Bm

i , i = 1, . . . ,mx be equal-size half-open half-closed hypercubes forming a parti-

tion of X = [0,1]dx . Note m = (my +1) ·mx . The partition becomes finer as m increases,
λ(Bm

i ) = m−1
x → 0, where λ is the Lebesgue measure. Let qm

i denote the center of Bm
i .

Taking into account that ∑
my
j=0 F0(Am

j |qm
i ) = 1, define m and θ1:m as

p(y|x,θ,m) =
∑mx

i=1

[
∑

my
j=1 F0(Am

j |qm
i )φ(y,μm

j ,σm)+ F0(Am
0 |qm

i )φ(y,0,σ0)
]
K(−Qm ||x −qm

i ||2)
∑mx

i=1 K
(− Qm ||x −qm

i ||2) ,

where σ0 is fixed, σm converges to zero as m increases, and μm
j is the center of Am

j . One

can always construct a partition Am
j so that

δm → 0, σm/δm → 0, hm/σm → 0; (A.2)

for example, in the example from two paragraphs above, let σm = h0.5
m and δm = h0.25

m .
Also, under Assumption 3.3 it is always possible to define a positive diverging to

infinity sequence Qm and a sequence sm (the squared diagonal of Bm
i ) satisfying

K(−2Qmsm)

K(−Qmsm)sdx /2
m

→ 0, sm = dxλ(Bm
i )2/dx → 0. (A.3)

For example, one can set Qm = s−2
m . This condition specifies that Qm should increase

fast relative to how fine the partition of X becomes.
Define I m

1 (x,sm) = {i : ||qm
i − x ||2 ≤ 2sm} and I m

2 (x,sm) = {i : ||qm
i − x ||2 > 2sm}.

Since sm is the squared diagonal of Bm
i , there exists i ∈ I m

1 (x,sm) such that

K
(
−Qm ||x −qm

i ||2
)

≥ K
(−Qmsm

)
. (A.4)
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For all i ∈ I m
2 (x,sm),

K
(
−Qm ||x −qm

i ||2
)

≤ K
(−2Qmsm

)
. (A.5)

Note that

∑i∈I m
1 (x,sm ) K(−Qm ||x −qm

i ||2)

∑mx
i=1 K(−Qm ||x −qm

i ||2)
(A.6)

≥ 1− ∑i∈I m
2 (x,sm ) K(−Qm ||x −qm

i ||2)

∑i∈I m
1 (x,sm ) K(−Qm ||x −qm

i ||2)

≥ 1− card(I m
2 (x,sm))K(−2Qmsm)

K(−Qmsm)
≥ 1−ddx /2

x
K(−2Qmsm)

K(−Qmsm)sdx /2
m

,

where the second inequality follows from (A.4) and (A.5). The last inequality follows from

card(I m
2 (x,sm)) ≤ mx = ddx /2

x s−dx /2
m .

For i ∈ I m
1 (x,sm) and Am

j ⊂ Cδm (y),

F
(

Am
j |xm

i

)
≥ λ(Am

j ) inf
z∈Cδm (y), ||t−x ||2≤2sm

f (z|t). (A.7)

Inequalities (A.6), (A.7), and Lemma A.3 imply that p( y|x,θ,m) exceeds

∑
j :Am

j ⊂Cδm (y)
∑

i∈I m
1 (x,sm )

F
(

Am
j |qm

i

) K(−Qm ||x −qm
i ||2)

∑l K(−Qm ||x −qm
l ||2)

φ
(

y,μm
j ,σm

)

≥ inf
z∈Cδm (y), ||t−x ||2≤2sm

f (z|t)

·
[

1− 6ψ(0)hm

σm
−2

∫ ∞
δm/σm

ψ(μ)dμ

]
·
[

1−ddx /2
x

K(−Qmsm)

K(−Qmsm/22)sdx /2
m

]
. (A.8)

By (A.2) and (A.3), given some ε1 > 0, there exists M1 such that for m ≥ M1 the product
in the last line of (A.8) is bounded below by (1− ε1).

If f0(y|x) is continuous at ( y, x) and f0( y|x) > 0, there exists M2 such that for m ≥ M2,
[ f0( y|x)/ infz∈Cδm ( y), ||t−x ||2≤2sm

f0(z|t)] ≤ (1 + ε1) since δm ,sm → 0. For any m ≥
max{M1, M2}

1 ≤ max

{
1,

f ( y|x)

p( y|x,θ,m)

}
≤ max

{
1,

f0( y|x)

infz∈Cδm ( y), ||t−x ||2≤2sm
f0(z|t)(1− ε1)

}
≤ 1+ ε1

1− ε1
.

Thus, logmax{1, f0(y|x)/p(y|x,θ,m)} → 0 a.s. F as long as f (y|x) is continuous in
(y, x) a.s. F0 ( f0(y|x) is always positive a.s. F0).
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Let us derive an integrable upper bound for the DCT,

p( y|x,θ,m) ≥
[

1−ddx /2
x

K(−2Qmsm)

K(−Qmsm)sdx /2
m

]

·
(

[1−1Am
0
( y)] · inf||z−y||≤r, ||t−x ||≤r

f0(z|t)·

∑
j :Am

j ⊂Cr ( y)∩(Am
0 )c

λ(Am
j )φ(y,μm

j ,σm) (A.9)

+1Am
0
( y) · inf||z−y||≤r, ||t−x ||≤r

f0(z|t) ·λ(Cr ( y)∩ Am
0 )φ( y,0,σ0)

)
.

For any m larger then some M3, the Riemann sum in (A.9) is bounded below by 1/4 (by
Lemma A.3) and[

1−ddx /2
x

K(−2Qmsm)

K(−Qmsm)sdx /2
m

]
≥ 1/2

(by (A.3)).
Choose σ0 so that for y ∈ Am

0 , 1 > 1/4 ≥ λ(Cr (y)∩ Am
0 )φ(y,0,σ0) ≥ rφ(y,0,σ0), for

example, σ0 = 8rψ(0). Then

logmax

{
1,

f0( y|x)

p(y|x,θ,m)

}

≤ logmax

{
1,

f0( y|x)

inf||z−y||≤r, ||t−x ||≤r f0(z|t) ·φ( y,0,σ0) · (r/2)

}

= log
1

φ( y,0,σ0)(r/2)
max

{
φ( y,0,σ0)(r/2),

f0( y|x)

inf||z−y||≤r, ||t−x ||≤r f0(z|t)
}

≤ − log(φ( y,0,σ0)(r/2))+ log
f0( y|x)

inf||z−y||≤r, ||t−x ||≤r f0(z|t) . (A.10)

The first expression in (A.10) is integrable by Assumption 3.2 part (ii). The second
expression in (A.10) is integrable by Assumption 3.1 (iii). Thus the proposition is
proved. n

Proof (Proposition 3.1).
The proof extends ideas from Theorem 6 in Ghosal et al. (1999) and Lemma 4.1 in Tokdar
(2006) to general location scale densities and covariate dependent mixing weights.

A generic element ofFn is a mixture with mn components (a mixture with the number of
components smaller than mn is a special case with some αj ’s equal to zero). It is proved in

Lemma A.1 below that for p(y|x,θ i
mn

,mn) ∈Fn , θ i
mn

= {
Qi

j ,μ
i
j ,σ

i
j ,qi

j ,α
i
j

}mn
j=1, i = 1,2,

and any x ∈ X ,∫
|p
(

y|x,θ1
mn

,mn

)
− p

(
y|x,θ2

mn
,mn

)
|dy (A.11)

≤ 2 max
j=1,...,mn

(
ψ(0)

|μ1
j −μ2

j |
σ 1

j

+ |σ 1
j −σ 2

j |
min(σ 1

j ,σ 2
j )

)
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+ 2

K(−Qndx )

mn

∑
j=1

|α̃1
j − α̃2

j |,

+ 2K ′dx

K(−Qndx )
max

j=1,...,mn
|Q2

j − Q1
j |

+ 4K ′dx Qn

K(−Qndx )
max

j=1,...,mn
max

l=1,...,dx
|q2

j,l −q1
j,l |,

where K ′ is a finite fixed bound on the derivative of K (Assumption 3.3) and α̃i
j =

αi
j /∑mn

l=1 αi
l .

The outline of the argument below is as follows. We define grids Gμσ = {(μi ,σi ), i =
1, . . . , Nμσ }, G Q = {Qi , i = 1, . . . , NQ}, Gq = {qi , i = 1, . . . , Nq }, and Gα = {αi =
(αi1, . . . ,αimn ), i = 1, . . . , Nα} on sets [−μn,μn] × [σ n,σ n], [0, Qn], [0,1]dx , and
[0,1]mn correspondingly. Then, we show that for any θ1

mn
with p( y|x,θ1

mn
,mn) ∈

Fn there exists θ2
mn

∈ [
Gμσ × G Q × Gq

]mn × Gα such that ||p( y|x,θ1
mn

,mn) −
p(y|x,θ2

mn
,mn)||1 ≤ δ. Thus, J (δ,Fn) ≤ mn log(Nμσ NQ Nq )+ log Nα . Plugging values

of (Nμσ , NQ , Nq , Nα) into this inequality will deliver the claim of the proposition.
Consider Gμσ first. Let ζ = min(δ/12,1). Define σh = σ n(1 + ζ )h , h ≥ 0. Let H

be the smallest integer such that σH = σ n(1 + ζ )H ≥ σ n . This implies that H ≤
1

log(1+ζ ) log( σ n
σ n

) + 1 and for any h ≥ 1, 2 σh−σh−1
σh−1

≤ δ
6 . Let Nj =

⌈
24ψ(0)

δ
μn

σj−1

⌉
. For

1 ≤ i ≤ Nj and 1 ≤ j ≤ H , define

Eμσ
i j =

(
−μn + 2μn(i −1)

Nj
,−μn + 2μni

Nj

]
× (

σj−1,σj
]
.

For any (μ1,σ 1) and (μ2,σ 2) in Eμσ
i j ,(

2ψ(0)
|μ1 −μ2|

σ 1 +2
|σ 1 −σ 2|

min(σ 1,σ 2)

)
≤ δ

3
.

Thus, when Gμσ consists of centers of sets Eμσ
i j , the first bound in (A.11) can be made no

larger than δ/3 with (μ2
1,σ 2

1 , . . . ,μ2
mn

,σ 2
mn

) ∈ [Gμσ ]mn . The number of points in Gμσ ,

Nμσ = ∑H
j=1 Nj , can be bounded as

Nμσ ≤
H

∑
j=1

(
24ψ(0)

δ

μn

σj
+1

)
= 24ψ(0)

δ

μn

σ n

H

∑
j=1

(1+ ζ )− j + H

≤ 24ψ(0)

δ

μn

σ n

1

ζ
+ 1

log(1+ ζ )
log(

σ n

σ n
)+1

= c0
μn

σ n
+ c1 log

σ n

σ n
+1, (A.12)

where c0,c1 depend on δ, but not on n.
Next, consider Gα . Since only the normalized values of αj ’s appear on the r.h.s. of

(A.11), Gα can include only points that belong to the (mn − 1)-dimensional simplex.
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Thus, we can take Gα from Lemma 1 in Ghosal et al. (1999). It follows immediately
from this lemma that the second bound in (A.11) can be made no larger than δ/3 with
(α2

1, . . . ,α2
mn

) ∈ Gα and Nα satisfying

log Nα ≤ mn

(
1+ log

1+ δK(−Qndx )/6

δK(−Qndx )/6

)
≤ mn

(
c2 + c3 log K(−Qndx )

)
,

where c2,c3 depend on δ, but not n.
Define G Q to be a uniform grid on [0, Qn], with Qi = (2i − 1)δK(−Qndx )/

(12K ′dx ), i = 1, . . . , NQ ,

NQ =
⌈

6K ′dx Qn

δK(−Qndx )

⌉
.

Since for any Q1
j ∈ [0, Qn] there exists Qi ∈ G Q such that |Q1

j − Qi | ≤
δK(−Qndx )/(12K ′dx ), the third bound in (A.11) can be made no larger than δ/6 with
(Q2

1, . . . , Q2
mn

) ∈ [G Q ]mn .

Define Gq to be a uniform grid on [0,1]dx ,

Gq =
{

rl = (2l −1)
δK(−Qndx )

24K ′dx Qn
, l = 1, . . . , (Nq )1/dx

}dx

,

Nq =
⌈

12K ′dx Qn

δK(−Qndx )

⌉dx

.

Since for any q1
j,l ∈ [0,1] there exists ri such that |q1

j,l −ri | ≤ δK(−Qndx )/(24K ′dx Qn),

the last bound in (A.11) can be made no larger than δ/6 with (q2
1 , . . . ,q2

mn
) ∈ [Gq ]mn .

Obtained bounds for Nμσ , Nα , NQ , and Nq imply

J (δ,Fn) ≤ mn log(Nμσ NQ Nq)+ log Nα

≤ mn

(
log

[
b0

μn

σ n
+b1 log

σ n

σ n
+1

]
+b2 +b3 log Qn +b4 log K(−Qndx )

)
,

where b0,b1,b2,b3,b4 do not depend on n. n

LEMMA A.1. Inequality (A.11) holds.

Proof. For notational simplicity let

π i
j (x) = αi

j K(−Qi
j ||x −qi

j ||2)

∑mn
l=1 αi

l K(−Qi
l ||x −qi

l ||2)
.
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Then for any given x ∈ X,∫
| f1(y|x)− f2(y|x)|dy

=
∫ ∣∣∣∣∣mn

∑
j=1

π1
j (x)

1

σ 1
j

ψ

(
y −μ1

j

σ 1
j

)
−

mn

∑
j=1

π2
j (x)

1

σ 2
j

ψ

(
y −μ2

j

σ 2
j

)∣∣∣∣∣dy

=
∫

|
mn

∑
j=1

π1
j (x)ψ1

j ( y)−π2
j (x)ψ2

j (y)+π1
j (x)ψ2

j ( y)−π1
j (x)ψ2

j ( y)|dy

≤
∫ mn

∑
j=1

π1
j (x)|ψ1

j ( y)−ψ2
j (y)|dy +

∫ mn

∑
j=1

|π1
j (x)−π2

j (x)|ψ2
j ( y)dy

=
mn

∑
j=1

π1
j (x)

∫
|ψ1

j ( y)−ψ2
j ( y)|dy +

mn

∑
j=1

|π1
j (x)−π2

j (x)|, (A.13)

where ψ i
j ( y) = (σ i

j )
−1ψ(( y − μi

j )/σ
i
j ). We will construct bounds for

∫ |ψ1
j ( y) −

ψ2
j ( y)|dy and ∑mn

j=1 |π1
j (x)−π2

j (x)| separately. First, let’s find an upper bound for

∫
|ψ1

j (y)−ψ2
j (y)|dy

=
∫ ∣∣∣∣∣ 1

σ 1
j

ψ

(
y −μ1

j

σ 1
j

)
− 1

σ 2
j

ψ

(
y −μ2

j

σ 2
j

)
+ 1

σ 1
j

ψ

(
y −μ2

j

σ 1
j

)
− 1

σ 1
j

ψ

(
y −μ2

j

σ 1
j

)∣∣∣∣∣dy

≤
∫ ∣∣∣∣∣ 1

σ 1
j

ψ

(
y −μ1

j

σ 1
j

)
− 1

σ 1
j

ψ

(
y −μ2

j

σ 1
j

)∣∣∣∣∣dy +
∫ ∣∣∣∣∣ 1

σ 1
j

ψ

(
y −μ2

j

σ 1
j

)
− 1

σ 2
j

ψ

(
y −μ2

j

σ 2
j

)∣∣∣∣∣dy.

Note that

∫ ∣∣∣∣∣ 1

σ 1
j

ψ

(
y −μ1

j

σ 1
j

)
− 1

σ 1
j

ψ

(
y −μ2

j

σ 1
j

)∣∣∣∣∣dy = 2
∫ |μ1

j −μ2
j |

2

− |μ1
j −μ2

j |
2

1

σ 1
j

ψ

(
y

σ 1
j

)
dy

≤ 2
∫ |μ1

j −μ2
j |

2

− |μ1
j −μ2

j |
2

1

σ 1
j

ψ(0)dy = 2ψ(0)
|μ1

j −μ2
j |

σ 1
j

. (A.14)

Without loss of generality assume that σ 1
j > σ 2

j , then

∫ ∣∣∣∣∣ 1

σ 1
j

ψ

(
y −μ2

j

σ 1
j

)
− 1

σ 2
j

ψ

(
y −μ2

j

σ 2
j

)∣∣∣∣∣dy

= 4
∫ +∞

0
max

(
0,

1

σ 2
j

ψ

(
y

σ 2
j

)
− 1

σ 1
j

ψ

(
y

σ 1
j

))
dy

≤ 4
∫ +∞

0
max

(
0,

1

σ 2
j

ψ

(
y

σ 1
j

)
− 1

σ 1
j

ψ

(
y

σ 1
j

))
dy
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= 4
∫ +∞

0

(
1

σ 2
j

− 1

σ 1
j

)
ψ

(
y

σ 1
j

)
dy

= 4
σ 1

j −σ 2
j

σ 2
j

∫ +∞
0

1

σ 1
j

ψ

(
y

σ 1
j

)
dy ≤ 4

σ 1
j −σ 2

j

σ 2
j

1

2
= 2

σ 1
j −σ 2

j

σ 2
j

.

Combining the two pieces we find that

mn

∑
j=1

π1
j (x)

∫
|ψ1

j (y)−ψ2
j (y)|dy ≤

mn

∑
j=1

π1
j (x)

(
2ψ(0)

|μ1
j −μ2

j |
σ 1

j

+2
|σ 1

j −σ 2
j |

min(σ 2
j ,σ 1

j )

)
.

(A.15)

The next step is to find an upper bound for ∑mn
j=1 |π1

j (x)−π2
j (x)|. We introduce additional

notation K i
j (x) = K(−Qi

j ||x −qi
j ||2) and Ai (x) = ∑mn

j=1 α̃i
j K i

j (x). Then for any x ∈ X ,

mn

∑
j=1

|π1
j (x)−π2

j (x)| =
mn

∑
j=1

∣∣∣∣∣ α̃1
j K 1

j (x)

∑mn
i=1 α̃1

i K 1
i (x)

− α̃2
j K 2

j (x)

∑mn
i=1 α̃2

i K 2
i (x)

∣∣∣∣∣
=

mn

∑
j=1

∣∣∣∣∣ α̃
1
j K 1

j (x)

A1(x)
− α̃2

j K 2
j (x)

A2(x)

∣∣∣∣∣
= 1

A1(x)A2(x)

mn

∑
j=1

∣∣∣α̃1
j K 1

j (x)A2(x)− α̃2
j K 2

j (x)A1(x)

+α̃2
j K 2

j (x)A2(x)− α̃2
j K 2

j (x)A2(x)
∣∣∣

≤ ∑mn
j=1 |α̃1

j K 1
j (x)− α̃2

j K 2
j (x)|

A1(x)
+ ∑mn

j=1 α̃2
j K 2

j (x)|A2(x)− A1(x)|
A1(x)A2(x)

= ∑mn
j=1 |α̃1

j K 1
j (x)− α̃2

j K 2
j (x)|

A1(x)
+ |A2(x)− A1(x)|

A1(x)

= ∑mn
j=1 |α̃1

j K 1
j (x)− α̃2

j K 2
j (x)|

A1(x)
+

|∑mn
j=1 α̃1

j K 1
j (x)− α̃2

j K 2
j (x)|

A1(x)

≤ 2
∑mn

j=1 |α̃1
j K 1

j (x)− α̃2
j K 2

j (x)|
A1(x)

= 2
∑mn

j=1 |α̃1
j K 1

j (x)− α̃2
j K 2

j (x)+ α̃1
j K 2

j (x)− α̃1
j K 2

j (x)|
∑mn

j=1 α̃1
j K 1

j (x)

≤ 2

[
∑mn

j=1 α̃1
j |K 1

j (x)− K 2
j (x)

∑mn
j=1 α̃1

j K 1
j (x)

+ ∑mn
j=1 |α̃1

j − α̃2
j |K 2

j (x)

∑mn
j=1 α̃1

j K 1
j (x)

]

≤ 2
1

K(−Qndx )

[
max

j=1,...,mn
|K 1

j (x)− K 2
j (x)|+

mn

∑
j=1

|α̃1
j − α̃2

j |
]

. (A.16)
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By Assumption 3.3, the derivative K ′ is bounded above, let K ′ < K ′ for some K ′
< ∞ ,

then∣∣∣K(
−Q1

j ||x −q1
j ||2

)
− K

(
−Q2

j ||x −q2
j ||2

)∣∣∣
≤
∣∣∣K(

−Q1
j ||x −q1

j ||2
)

− K
(
−Q2

j ||x −q1
j ||2

)∣∣∣
+
∣∣∣K(

−Q2
j ||x −q1

j ||2
)

− K
(
−Q2

j ||x −q2
j ||2

)∣∣∣
≤ K ′(||x −q1

j ||2
)

|Q1
j − Q2

j |+ K ′Qn

dx

∑
l=1

2
(
|q2

j,l −q1
j,l |

)
≤ K ′dx

∣∣∣Q2
j − Q1

j

∣∣∣+2K ′dx Qn max
l=1,...,dx

∣∣∣q2
j,l −q1

j,l

∣∣∣ . (A.17)

n

Proof (Proposition 4.1).
(i) Let the parameters associated with KM be θ K M = {αj , Qj ,qj ,μj ,σj }m

j=1. For δ ∈
(0,1) and a large integer M to be determined later, let the parameters for the KSB mixture
be

θ K SB
1:m·M = {αj δ, Qj ,qj ,μj ,σj }m

j=1 ×·· ·×{αj δ, Qj ,qj ,μj ,σj }m
j=1,

so that θ K SB
1:m·M is given by M repetitions of θ K M (except αj ’s are multiplied by δ). For

brevity let Kj (x) = K(−Qj ||x −qj ||2). Then

p(y|x,θ K SB
1:m·M ) =

m·M
∑
j=1

αj δKj (x)∏
l< j

{1−αlδKl(x)}φ( y,μj ,σj )

=
M

∑
h=1

(
m

∑
j=1

φ(y,μj ,σj )αj δKj (x)∏
l< j

(1−αlδKl(x))

)[
m

∏
i=1

(1−αi δKi (x))

]h−1

=
(

m

∑
j=1

φ(y,μj ,σj )αj δKj (x)∏
l< j

(1−αlδKl(x))

)
M

∑
h=1

[
m

∏
i=1

(1−αi δKi (x))

]h−1

= ∑m
j=1 φ( y,μj ,σj )αj δKj (x)∏l< j (1−αlδKl(x))

1−∏m
i=1(1−αi δKi (x))

⎛⎝1−
[

m

∏
i=1

(1−αi δKi (x))

]M
⎞⎠

= ∑m
j=1 φ( y,μj ,σj )αj δKj (x)∏l< j (1−αlδKl(x))

∑m
j=1 αj δKj (x)∏l< j (1−αlδKl(x))

⎛⎝1−
[

m

∏
i=1

(1−αi δKi (x))

]M
⎞⎠

>
∑m

j=1 φ(y,μj ,σj )αj δKj (x)∏m
l=1(1−αlδKl(x))

∑m
j=1 αj δKj (x)

⎛⎝1−
[

m

∏
i=1

(1−αi δKi (x))

]M
⎞⎠

>
∑m

j=1 φ( y,μj ,σj )αj δKj (x)

∑m
j=1 αj δKj (x)

(
[1− δ max

j=1,...,m
αj ]

m
)⎛⎝1−

[
m

∏
i=1

(1−αi δKi (x))

]M
⎞⎠
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= p(y|x,θ K M ,m)

(
[1− δ max

j=1,...,m
αj ]

m
)⎛⎝1−

[
m

∏
i=1

(1−αi δKi (x))

]M
⎞⎠ ,

where the equality in the fifth line follows by induction and we used the fact that K (·) ≤ 1.
Let δ < (1− exp(−ε/(2m)))/maxj=1,...,m αj , then [1 − δ maxj=1,...,m αj ]m >

exp{−ε/2}. There exists j such that αj > 1/m and by Assumption 3.3 Kj (x) > K(−Qdx )

for any x ∈ X , where Q = maxj=1,...,m Qj . Therefore,

m

∏
i=1

(1−αi δKi (x)) < 1− δK(−Qdx )

m
.

For M >
log(1−e−ε/2)

log
(

1− δK(−Qdx )
m

) the following is true:

⎛⎝1−
[

m

∏
i=1

(1−αi δKi (x))

]M
⎞⎠ > 1−

(
1− δK(−Qdx )

m

)M

> exp{−ε/2} .

Thus, log
(

p
(

y
∣∣∣x,θ K M ,m

)
/p

(
y
∣∣∣x,θ K SB

1:m·M
))

< ε and the proposition claim

(i) follows.
(ii) By part (i) of the proposition, (4.2) holds for ε/2 and some θ̃ K SB

1:n . The rest of the

proof is identical to the proof of Corollary 3.1 (one only needs to replace θ1:m and θ̃1:m
with θ K SB

1:n and θ̃ K SB
1:n correspondingly). n

Proof (Proposition 4.3).
The proof is similar to the proof of Proposition 3.1, and it uses the same notation.
It is shown in Lemma A.2 below that for p(y|x,θ i ) ∈ Fn , i = 1,2, and any x ∈ X ,∫ ∣∣∣p

(
y|x,θ1

)
− p

(
y|x,θ2

)∣∣∣dy ≤ 2δ (A.18)

+2 max
j=1,...,mn

(
ψ(0)

|μ1
j −μ2

j |
σ 1

j

+ |σ 1
j −σ 2

j |
min(σ 1

j ,σ 2
j )

)

+m2
n max

j=1,...,mn

∣∣∣α1
j −α2

j

∣∣∣ ,
+m2

n K ′dx max
j=1,...,mn

∣∣∣Q1
j − Q2

j

∣∣∣
+m2

n2K ′dx Qn max
j=1,...,mn

max
l=1,...,dx

∣∣∣q1
j,l −q2

j,l

∣∣∣ ,
where K ′ is a finite fixed bound on the derivative of K (Assumption 3.3).

Thus, we can set up Gμσ and Nμσ exactly as in the proof of Proposition 3.1.
Define Gα to be a uniform grid on [0,1]mn ,

Gα =
{

κl = (2l −1)
δ

3m2
n
, l = 1, . . . , (Nα)1/mn

}mn

,

Nα =
⌈

3m2
n

2δ

⌉mn

.
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Since for any α1
j ∈ [0,1] there exists κl such that |α1

j − κl | ≤ δ/(3m2
n), the second bound

in (A.18) can be made no larger than δ/3 with (α2
1, . . . ,α2

mn
) ∈ Gα .

Define G Q to be a uniform grid on [0, Qn], with Qi = (2i − 1)δ/(3K ′dx m2
n), i =

1, . . . , NQ ,

NQ =
⌈

3K ′dx m2
n

2δ

⌉
.

Since for any Q1
j ∈ [0, Qn] there exists Qi ∈ G Q such that |Q1

j − Qi | ≤ δ/(3K ′dx m2
n),

the third bound in (A.18) can be made no larger than δ/3 with (Q2
1, . . . , Q2

mn
) ∈ [G Q ]mn .

Define Gq to be a uniform grid on [0,1]dx ,

Gq =
{

rl = (2l −1)
δ

6K ′dx Qnm2
n
, l = 1, . . . , (Nq )1/dx

}dx

Nq =
⌈

6K ′dx Qnm2
n

2δ

⌉dx

.

Since for any q1
j,l ∈ [0,1] there exists ri such that |q1

j,l − ri | ≤ δ/(6K ′dx Qnm2
n), the last

bound in (A.18) can be made no larger than δ/3 with (q2
1 , . . . ,q2

mn
) ∈ [Gq ]mn .

Obtained bounds for Nμσ , Nα , NQ , and Nq imply

J (4δ,Fn) ≤ mn log(Nμσ NQ Nq )+ log Nα

≤ mn

(
log

[
b0

μn

σ n
+b1 log

σ n

σ n
+1

]
+b2 +b3 log Qn +b4 logmn

)
.

n

LEMMA A.2. Inequality (A.18) holds.

Proof. For f1, f2 ∈ Fn ,

∫
Y

∞
∑
j=1

∣∣∣π1
j (x)φ

(
y; μ1

j ,σ
1
j

)
−π2

j (x)φ
(

y; μ2
j ,σ

2
j

)∣∣∣dy

≤
∫

Y

mn

∑
j=1

π1
j (x)

∣∣∣φ( y; μ1
j ,σ

1
j

)
−φ

(
y; μ2

j ,σ
2
j

)∣∣∣dy

+
∫

Y

mn

∑
j=1

∣∣∣π1
j (x)−π2

j (x)
∣∣∣φ( y; μ2

j ,σ
2
j

)
dy

+
∞
∑

j=mn+1
|π1

j (x)−π2
j (x)|

≤
mn

∑
j=1

π1
j (x)

∫
Y

∣∣∣φ( y; μ1
j ,σ

1
j

)
−φ

(
y; μ2

j ,σ
2
j

)∣∣∣dy
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+
mn

∑
j=1

∣∣∣∣∣∣π1
j −π2

j

∣∣∣∣∣∣
1
+ sup

x∈X

∞
∑

j=mn+1

∣∣∣π1
j (x)

∣∣∣+ ∣∣∣π2
j (x)

∣∣∣
≤

mn

∑
j=1

π1
j (x)

∫
Y

∣∣∣φ( y; μ1
j ,σ

1
j

)
−φ

(
y; μ2

j ,σ
2
j

)∣∣∣dy

+
mn

∑
j=1

∣∣∣∣∣∣π1
j −π2

j

∣∣∣∣∣∣
1
+2δ,

where the last inequality is true by construction of Fn as supx∈X ∑∞
j=mn+1 |π i

j (x)| ≤ δ for
i = 1,2. As shown in Lemma A.1, the first expression on the r.h.s. of the last inequality is
bounded by the first bound in (A.18),

|π1
j (x)−π2

j (x)| =
∣∣∣∣∣α1

j K 1
j (x)∏

i< j

(
1−α1

i K 1
i (x)

)
−α2

j K 2
j (x)∏

i< j

(
1−α2

i K 2
i (x)

)∣∣∣∣∣
≤
∣∣∣α1

j K 1
j (x)−α2

j K 2
j (x)

∣∣∣∏
i< j

(
1−α1

i K 1
i (x)

)
+α2

j K 2
j (x)

∣∣∣∣∣∏i< j

(
1−α1

i K 1
i (x)

)
− ∏

i< j

(
1−α2

i K 2
i (x)

)∣∣∣∣∣
≤
∣∣∣α1

j K 1
j (x)−α2

j K 2
j (x)

∣∣∣+ ∣∣∣∣∣∏i< j

(
1−α1

i K 1
i (x)

)
− ∏

i< j

(
1−α2

i K 2
i (x)

)∣∣∣∣∣
≤

j

∑
i=1

∣∣∣α1
i K 1

i (x)−α2
i K 2

i (x)
∣∣∣

≤
j

∑
i=1

∣∣∣α1
i −α2

i

∣∣∣+ ∣∣∣K 1
i (x)− K 2

i (x)
∣∣∣ .

Using the bound on |K 1
i (x)− K 2

i (x)| from (A.17) in Lemma A.1 and noting that ∑mn
j=1 j ≤

m2
n complete the proof. n

Proof (Lemma 4.1).
First, we note that if the prior distribution of αj first-order stochastically dominates

Beta(1,γ ) and if the prior distribution of Kj = K(−Qj dx ) first-order stochastically dom-
inates Beta(γ +1,1), then αj · Kj first-order stochastically dominates Beta(1,γ +1). This
is true by Theorem 1 of Jambunathan (1954), which states that if a1 ∼ Beta(1,γ ) and if
a2 ∼ Beta(γ +1,1), then a1 ·a2 ∼ Beta(1,γ +1).

Second, another auxiliary result that will be used in the proof of the lemma is that if
c ∼ Gamma(m,1/γ ), then Pr(c < x) < e−0.5m logm for m large enough. For positive
integer m,

Pr(c < x) =
∫ x

0 γ mtm−1e−γ t dt

(m −1)!
=

∫ γ x
0 tm−1e−t dt

(m −1)!
< (γ x)m/m!

= (γ x)m

exp{m logm −m + O(log(m))} (by Sterling formula)
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= exp{−m logm +m +m log(γ x)− O(log(m))}
= exp(−0.5m logm)

exp(m log(γ x)+m + O(log(m)))

exp(0.5m logm)

< exp(−0.5m logm)

when m is sufficiently large.
Using these two auxiliary results, note that if αj and Kj first-order stochastically domi-

nate Beta(1,γ ) and Beta(γ + 1,1), then for a1
i.i.d.∼ Beta(1,γ ), a2

i.i.d.∼ Beta(γ + 1,1),

bj
i.i.d.∼ Beta(1,γ +1), and c ∼ Gamma(mn,1/(γ +1)),

�

(
mn

∏
j=1

(1−αj Kj ) > δ

)

=
∫

�

(
α1 K1 < 1− δ

∏j �=1(1−αj Kj )
|αj , Kj , j �= 1

)
d�(αj , Kj , j �= 1)

≤
∫

�

(
a1a2 < 1− δ

∏j �=1(1−αj Kj )
|αj , Kj , j �= 1

)
d�(αj , Kj , j �= 1)

≤
∫

�

(
b1 < 1− δ

∏j �=1(1−αj Kj )
|αj , Kj , j �= 1

)
d�(αj , Kj , j �= 1)

= �

(
(1−b1) ∏

j �=1

(
1−αj Kj

)
> δ

)
(repeat for b2, . . . ,bmn )

≤ �

(
mn

∏
j=1

(1−bj ) > δ

)
= �

(
mn

∑
j=1

− log(1−bj ) < − log(δ)

)
= �(c < − log(δ)) < e−0.5mn logmn .

n

LEMMA A.3. Let A1, . . . , Am be a partition of an interval on R such that λ(Aj ) ≤ h
and μj ∈ Aj . Assume Cδ( y) = [ y −δ, y +δ] ⊂ ∪Aj is an interval with center y and length
δ. Then

m

∑
j=1

λ(Aj ∩Cδ( y))σ−1ψ(( y −μj )/σ ) ≥ 1− 4hψ(0)

σ
−2

∫ ∞
δ/σ

ψ(μ)dμ.

If Cδ( y) = [ y − δ, y] or Cδ( y) = [ y, y + δ], the lower bound in the above expression
should be divided by 2.

Proof. Let J = {j : Aj ∩Cδ( y) ⊂ [ y−δ, y]}. For any j ∈ J and μ ∈ Aj ∩Cδ( y), μ−h ≤
μj as λ(Aj ) < h and μj ∈ Aj , which implies φ( y,μj ,σ ) ≥ φ( y,μ−h,σ ). Therefore,

∑
j∈J

λ(Aj ∩Cδ( y))φ( y,μj ,σ ) ≥
∫
∪j∈J [Aj ∩Cδ( y)]

φ( y,μ−h,σ )dμ. (A.19)
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Note next that∫
∪j∈J [Aj ∩Cδ( y)]

φ( y,μ−h,σ )dμ

≥
∫ y−h

y−δ
φ( y,μ−h,σ )dμ =

∫ y−2h

y−δ−h
φ( y,μ,σ )dμ

≥
∫ y

y−δ
φ( y,μ,σ )dμ−

∫ y

y−2h
φ( y,μ,σ )dμ

≥
∫ y

y−δ
φ( y,μ,σ )dμ− 2hψ(0)

σ
.

By symmetry the same results can be obtained for J = {j : Aj ∩Cδ( y) ⊂ [ y, y +δ]}. Thus

m

∑
j=1

λ(Aj ∩Cδ( y))φ( y,μj ,σ ) ≥
∫ y+δ

y−δ
φ( y,μ,σ )dμ−2

2hψ(0)

σ
.

A change of variables delivers the claim of the lemma. n

THEOREM A.1. The theorem summarizes modifications of the theoretical results from
Sections 3–4 to models with covariate dependent locations β ′

j z(x) introduced in Section 5.
Suppose Assumption 5.1 holds. Replace the definition of parameter vector

θ = {Qj ,μj ,σj ,qj ,αj }∞j=1 ∈ � = (R+ ×Y × R+ × X × (0,1))∞ by

θ = {Qj ,βj ,σj ,qj ,αj }∞j=1 ∈ � =
(

R+ × Rdz × R+ × X × (0,1)
)∞

(make the same change in θ1:m, θ K M , θ K SB, and θ K SB
1:n ).

(i) Theorem 3.1 and Corollary 3.1 hold for the model with locations β ′
j z(x). Thus, the

weak posterior consistency for kernel mixtures (Theorem 3.2) also holds.
(ii) Propositions 4.1 and 4.2 and, thus, the weak posterior consistency for kernel stick-

breaking mixtures (Theorem 4.1) hold for the model with locations β ′
j z(x).

(iii) For the models with locations β ′
j z(x), replace inequality |μj | ≤ μn in the sieve def-

initions by |βj,l | ≤ βn. Then, the entropy bounds in Propositions 3.1 and 4.3 are changed
as follows: The term

log

[
b0

μn

σ n
+b1 log

σ n

σ n
+1

]
in the bounds is replaced by

dz log

[
b0

βn

σ n
+b1 log

σ n

σ n
+1

]
.

(iv) Replace �(|μj | > μn) in (3.4) and (4.4) with ∑dz
l=1 �(|βj,l | > βn) and make the

changes in the sieve definitions and the entropy bounds (3.6) and (4.5) as described in part
(iii) above. Then, strong posterior consistency (Theorems 3.3 and 4.2) holds.
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Proof. (i) Theorem 3.1 is obtained by setting βj,l = 0 for all j and all l = 2, . . . ,dz .
The proof of Corollary 3.1 can be modified in the following way. Let |βn

j,l | ≤ βl and

let β = maxz∈Z ||z||∞ ∑dz
l=1 βl . Note that β < ∞ since maxz∈Z ||z||∞ = 1 by Assumption

5.1. Then equation (3.3) is true by setting μ = −β and μ = β and hence Corollary 3.1
holds.

(ii) Propositions 4.1 and 4.2 remain true without any changes.
(iii) Equivalents of Propositions 3.1 and 4.3 can be proved as follows. The bounds in

(3.4) and (4.3) can be adapted to the current setup by replacing |μ1
j −μ2

j | with ∑dz
l=1 |β1

j,l −
β2

j,l |. Thus, we only need to replace Gμσ and Nμσ with suitable Gβσ and Nβσ . Using the

notation from the definition of Eμσ
i j in the proof of Proposition 3.1, we define

Eβσ
i1,...,idz , j =

dz

∏
l=1

(
−βn + 2βn(il −1)

Nj
,−βn + 2βnil

Nj

]
× (

σj−1,σj
]
,

where Nj =
⌈

24dzψ(0)
δ

βn
σj−1

⌉
, 1 ≤ ik ≤ Nj , and 1 ≤ j ≤ H . If (β1,σ1), (β2,σ2) ∈

Eβσ
i1,...,idz , j , then

2ψ(0)
∑dz

l=1 |β1,l −β2,l |
σ1

+2
|σ1 −σ2|

min(σ1,σ2)
≤ δ

3
. (A.20)

Thus, when Gβσ consists of centers of sets Eβσ
i1,...,idz , j , an analog of the first bound in

(A.11) can be made no larger than δ/3 with (β2
1 ,σ 2

1 , . . . ,β2
mn

,σ 2
mn

) ∈ [Gβσ ]mn . The num-

ber of points in Gβσ , Nβσ = ∑H
j=1 N dz

j ≤
(

∑H
j=1 Nj

)dz
. By the same arguments as in

deriving (A.12),

Nβσ ≤
(

b0
βn

σ n
+b1 log

σ n

σ n
+1

)dz

,

where b0,b1 depend on δ, but not on n. Thus, the claimed entropy bounds are obtained.
(iv) This part is implied by parts (i)–(iii) and the general strong posterior consistency

result (Theorem 2.2).
n

APPENDIX B. Computation

B.1. MCMC Algorithm. This section describes an MCMC algorithm for a KSB model
given in (6.1). Let us denote the data by Y = {yi }N

i=1 and X = {xi }N
i=1 and parameters by

α = {αj }∞j=1, Q = {Qj }∞j=1, q = {qj }∞j=1, and θ = (α, Q,q,{βj ,σ
2
j }∞j=1). The prior is

(βj,0,βj,1)′ ∼ N (μβ, H−1
β ), σ 2

j ∼ I nvGamma(ν,bσ ), αj ∼ Beta(a,b), qj ∼ U (0,1),
Qj ∼ Exponential(τ ) i.i.d. for each j .

We introduce latent variables Z = {zi }N
i=1 and U = {ui }N

i=1, such that

p(yi |xi ,θ,ui , zi = j) = φ
(

yi ; βj,0 +βj,1xi ,σ
2
j

)
and p(zi = j |xi ,θ) = πj (x ; α,
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642 ANDRIY NORETS AND JUSTINAS PELENIS

Q,q). As in slice sampling algorithms (Neal, 2003; Walker, 2007), the latent variables
U are such that p(ui |zi , xi ,θ) = 1(ui < πzi (xi ; α, Q,q))/πzi (xi ; α, Q,q). Then the
posterior density of unobservables is

p(θ, Z ,U |Y, X) ∝
N

∏
i=1

[
p( yi |xi ,ui ,θ, zi )p(ui |zi , xi ,θ)p(zi |xi ,θ)

] ·�(θ)

=
N

∏
i=1

φ
(

yi ; βzi ,0 +βzi ,1xi ,σ
2
zi

)
1
(
ui < πzi (xi ; α,ψ,q)

) ·�(θ),

(B.1)

where �(θ) is the prior density of the parameters.
The blocks of our Metropolis-within-Gibbs MCMC algorithm are as follows.

1. Blocks for {βj ,σ
2
j }∞j=1. Following the retrospective sampling ideas from Pa-

paspiliopoulos and Roberts (2008), we simulate only {βj ,σ
2
j }M

j=1, where M =
max{Z} is the maximum allocation number within any given iteration. The con-
ditional posterior for {βj ,σ

2
j }∞j=M+1 is independent of the rest of the variables and

equal to the prior distribution. Thus, any finite part of {βj ,σ
2
j }∞j=M+1 can be simu-

lated in subsequent MCMC iterations from the prior if necessary (when M becomes
larger, see Step 6 of the algorithm below).

For j ≤ M , let Tj = ∑N
i=1 1{zi = j}. From posterior density (B.1) we find that

p
(
βj |Y, Z , X,U,θ\βj

) ∝ φ(βj ; μβ, H−1
β ) ∏

i :zi = j
φ( yi ; βj,0 +βj,1xi ,σ

2
j ).

This leads to the conditional posterior distribution for βj ,

βj |(Y, Z , X,U,θ\βj ) ∼ N
(
μβ, H−1

β

)
, where

Hβ = Hβ +σ−2
j ∑

i :zi = j

(
1 x ′

i
xi xi x ′

i

)
,

μβ = H−1
β

(
Hβμβ +σ−2

j ∑
i :zi = j

(
xi

xi yi

))
.

Similarly,

p(σ 2
j |Y, Z , X,U,θ\σj ) ∝ I nvGamma

(
σ 2

j ; ν,bσ

)
∏

i :zi = j
φ
(

yi ; βj,0 +βj,1xi ,σ
2
j

)
.

Then the conditional posterior distribution of σj is

σ 2
j |(Y, Z , X,U,θ\σj )

∼ I nvGamma

⎛⎝ν + Tj /2,

(
b−1
σ +0.5 ∑

i :zi = j
( yi −βj,0 −βj,1xi )

2

)−1
⎞⎠ .
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2. Block {αj ,ui , i : zi ≥ j} is updated separately for each j = 1, . . . , M by a
Metropolis-within-Gibbs step with the following transition probability at MCMC
iteration m +1:

(a) Simulate proposal α∗
j from a Markov transition density

R[α∗
j |αm

j ; Zm ,θm \αm
j ],

(which is parameterized by (Zm ,θm \αm
j ));

(b) conditional on α∗
j , simulate u∗

i for i such that zi ≥ j from the uniform density

1{u∗
i < πzi (xi ; α∗

j ,αm \αm
j ,qm , Qm)}

πzi (xi ; α∗
j ,αm \αm

j ,qm , Qm)
.

Since ui ’s are simulated from the conditional proposal equal to the conditional tar-
get, they do not affect the Metropolis-Hastings acceptance probability

min

{
1,

p(α∗
j |X, Zm ,Y,θm\α∗

j )/R[α∗
j |αm

j ; Zm ,θm \αm
j ]

p(αm
j |X, Zm ,Y,θm\αm

j )/R[αm
j |α∗

j ; Zm ,θm \α∗
j ]

}
, (B.2)

where

p(α∗
j |X, Zm ,Y,θm\α∗

j ) ∝ �(α∗
j )

N

∏
i :zi ≥ j

πzi (xi ; α∗
j ,αm\αm

j , Q,q). (B.3)

We use the transition density for αj ,

α∗
j |αm

j ; Um , Zm ,θm \αm
j ∼ Beta(a + Tj ,b +b(αm

j )), where

b(αm
j ) =

∑i :zi > j log
(

1−αm
j K(−Qj ||xi −qj ||2)

)
log(1−αm

j )
.

This transition density is constructed so that the kernels of the conditional posterior
density in (B.3) and the proposal beta density are equal at αm

j .

The draws of ui ’s obtained in this step are not used in the algorithm (they are res-
imulated in step 5 below). Thus, their role is only in the justification of a convenient
update for αj ’s, and they are not simulated in the algorithm implementation.

3. Updating block {qj ,ui , i : zi ≥ j} is analogous to updating {αj ,ui , i : zi ≥ j}, where
instead of transition density R we use a Metropolis random walk density

q∗
j |qm

j ; Um , Zm ,θm \qm
j ∼ N (qm

j , (2Qm
j Tj +4)−1).

4. Updating block {Qj ,ui , i : zi ≥ j} is analogous to updating {αj ,ui , i : zi ≥ j},
where instead of transition density R we use Q∗

j |αm
j ; Um , Zm ,θm \ Qm

j ∼
N (Qm

j ,0.52).

5. Updating U . For all i = 1, . . . , N , p(ui |X,Y, Z ,θ) ∝ 1(ui < πzi (xi )). Therefore,
simulate ui ∼ U (0,πzi (xi )) for all i .
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644 ANDRIY NORETS AND JUSTINAS PELENIS

6. Updating {αj ,qj ,βj ,σ
2
j , Qj }M∗

j=M+1, where M∗ is such that for all i = 1, . . . , N ,

M∗

∑
j=1

πj (xi ) > 1−ui . (B.4)

As described below in Step 7 of the algorithm, this condition on M∗ guarantees that
draws of αj , qj , βj , σ 2

j , and Qj necessary for updating Z are available.

For all j > M the density of {αj ,qj ,μj ,σ
2
j , Qj } conditional on (X,Y, Z ,U )

and other parameters is equal to the prior density. Hence, we simulate
{αj ,qj ,μj ,σ

2
j , Qj } for j = M +1, . . . , M∗ from the prior.

7. Updating Z . Note that

p(zi = j |X,Y,U,θ) ∝ 1(ui < πj (xi ))φ(yi ; βj,0 +βj,1xi ,σ
2
j ).

By construction, πj (xi ) < ui for all j > M∗ (see equation (B.4)). Then p(zi =
j |X,Y,U,θ) = 0 for all j > M∗ and hence updating zi is a simple draw from a
multinomial distribution for each i with

p
(
zi = j |X,Y,U,θ, j ≤ M∗) = 1(ui < πj (xi ))φ(yi ; βj,0 +βj,1xi ,σ

2
j )

∑M∗
l=1 1(ui < πl(xi ))φ(yi ; βl,0 +βl,1xi ,σ

2
l )

.

B.2. Posterior of Conditional Density. In the simulation exercise of Section 6, the
estimator of conditional density at given ( y, x) is the posterior mean of p( y|x,θ),
p( y|x,Y, X) = ∫

p( y|x,θ)d�(θ |Y, X), which is also equal to the predictive density of
y given x . To approximate p( y|x,Y, X) and the 0.5% and 99.5% quantiles of the poste-
rior for p( y|x,θ) also reported in Section 6, we can use MCMC draws {θ(l), Z (l)}L

l=1.

Specifically, for Jl ≥ max Z (l),

p( y|x,Y, X) ≈ 1

L

L

∑
l=1

⎡⎣ Jl

∑
j=1

πj (x ; θ(l))φ

⎛⎝ y −β
(l)
j,0 −β

(l)
j,1

′x
σ

(l)
j

⎞⎠
+
(

1−
Jl

∑
j=1

πj (x ; θ(l))

)∫
φ

(
y −β0 −β1

′x
σ

)
d�(β0,β1,σ )

]
, (B.5)

where the integral in the second line of the equation can be evaluated numerically. Note
that when Jl = ∞, the r.h.s. of (B.5) is just a sample average for the population mean,
p( y|x,Y, X). The use of finite Jl not only makes the computation feasible but also reduces
the variance of the approximation (see Sec. 4.4.1 in Geweke, 2005).

To approximate p( y|x,θ(l)), l = 1, . . . , L , which is necessary for obtaining the posterior
quantiles of p( y|x,θ), we use the expression in the square brackets of (B.5). The quality
of the resulting quantile approximations improves as Jl increases; we choose Jl so that

1−
Jl

∑
j=1

πj (x ; θ(l)) < 10−4, ∀l, x .
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The results in Section 6 are obtained on a grid for pairs (y, x), where y ∈
{−1.5,−1.49, . . . ,1.5} and x ∈ {0.25,05,0.75} unless specified otherwise.

APPENDIX C. Prior sensitivity analysis

The DGP for prior sensitivity analysis is given in (6.3). The results are presented for
the sample size of N = 500. The prior defined in (6.2) is used as the benchmark for the
analysis. We consider the following deviations from the benchmark prior:

(i) Benchmark prior;

(ii) Benchmark prior, but H−1
μ = diag(100 ·var(Y ),1);

(iii) Benchmark prior, but bσ = 0.02(var(Y ))−1;
(iv) Benchmark prior, but ν = 20;
(v) Benchmark prior, but b = 0.05 and γ = 1.05;
(vi) Benchmark prior, but b = 10 and γ = 11.

Figures 3 and 4 show conditional density estimates with the rows representing x =
0.25,0.5,0.75 and the columns representing different priors. Results were obtained by
running the MCMC algorithm from Appendix B for 400,000 iterations with a burn-in of
100,000 and using only every 20th iteration to construct the plots.

FIGURE 3. Estimated conditional response densities for different covariate values and dif-
ferent prior specifications. The solid lines are the true values, the dashed lines are the
posterior means, and the dotted lines are pointwise 99% equal-tailed credible intervals.
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FIGURE 4. Estimated conditional response densities for different covariate values and dif-
ferent prior specifications. The solid lines are the true values, the dashed lines are the
posterior means, and the dotted lines are pointwise 99% equal-tailed credible intervals.

Conditional density estimates for priors (i) and (ii) are very similar; the estimates for
priors (iv) and (v) are comparable as well. Priors (vi) and, especially, (iii) lead to unreason-
able results. Results for priors (vi) demonstrate that high values of γ limit the dependence
on covariates and lead to oversmoothing. Prior (iii) performs poorly, as the choice of bσ

implies very high variance of responses within mixture components.
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