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ESTIMATION OF DYNAMIC DISCRETE CHOICE MODELS
USING ARTIFICIAL NEURAL NETWORK APPROXIMATIONS

Andriy Norets
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� I propose a method for inference in dynamic discrete choice models (DDCM) that utilizes
Markov chain Monte Carlo (MCMC) and artificial neural networks (ANNs). MCMC is
intended to handle high-dimensional integration in the likelihood function of richly specified
DDCMs. ANNs approximate the dynamic-program (DP) solution as a function of the parameters
and state variables prior to estimation to avoid having to solve the DP on each iteration.
Potential applications of the proposed methodology include inference in DDCMs with random
coefficients, serially correlated unobservables, and dependence across individual observations.
The article discusses MCMC estimation of DDCMs, provides relevant background on ANNs,
and derives a theoretical justification for the method. Experiments suggest this to be a promising
approach.
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1. INTRODUCTION

The dynamic discrete choice model (DDCM) is a dynamic program
(DP) with discrete controls. Estimation of these models is a growing
area in econometrics with a wide range of applications. Labor economists
employed DDCMs in modeling job search and occupational choice (Keane
and Wolpin, 1997; Miller, 1984; Wolpin, 1987), retirement decisions
(French, 2005; Rust and Phelan, 1997; Stock and Wise, 1990), fertility
(Hotz and Miller, 1993; Wolpin, 1984), and crime (Imai and Krishna,
2004). Health economists estimated DDCMs of medical care utilization
(Gilleskie, 1998), health and financial decisions of elderly (Davis, 1998),
and smoking addiction (Choo, 2000). In industrial organization DDCMs

Address correspondence to Andriy Norets, Department of Economics, Princeton University,
Princeton, NJ 08544, USA; E-mail: anorets@princeton.edu



Estimation of Dynamic Discrete Choice Models 85

were used for studying optimal investment replacement (Cho, 2011; Das,
1992; Kennet, 1994; Rust, 1987). Pakes (1986) estimated a DDCM of patent
renewals. There is a growing interest to DDCMs in marketing literature
(Erdem and Keane, 1996; Osborne, 2011).

DDCMs are attractive for empirical research since they are grounded
in economic theory. However, estimation of these models is very
computationally expensive. The DP has to be solved at each iteration of
an estimation procedure and the likelihood function of a richly specified
DDCM contains high-dimensional integrals.

Norets (2009) shows that in the Bayesian framework Markov chain
Monte Carlo (MCMC) methods can handle the high dimensional
integration in the DDCMs’ likelihood function. An MCMC estimation
procedure for a DDCM may require a lot of iterations for convergence.
Thus, the solution of the DP that has to be obtained at each iteration of
the estimation procedure constitutes a considerable part of the algorithm’s
computational costs. Imai et al. (2009) and Norets (2009) proposed
methods for solving the DP that use information from the previous MCMC
iterations to speed up the DP solution on the current iteration. The
approach based on artificial neural networks (ANN) proposed here further
reduces the costs of solving the DP in the estimation procedure.

The expected value function can be seen as a function of the
parameters and the state variables. Instead of obtaining the DP solution
at each iteration of the estimation procedure one could beforehand
approximate it by a function of the parameters and states and then use this
approximating function in the estimation procedure. Under this approach,
there is no need to solve the DP at each iteration of a long posterior
simulator run and for each individual in the sample if random/individual
specific coefficients are included in the model specification.

Approximating a function of several variables is a formidable task. In
the previous literature, some authors, e.g., Ackerberg (2009), Bajari et al.
(2010), and Brown and Flinn (2006), proposed to presolve a model at
some state space and parameter grid points and use kernel smoothing
or similar methods to evaluate the solution of the model at different
parameter and state space points during estimation. However, kernel
smoothing might not work well in high dimensional problems and it
did not perform well in experiments on the model considered in this
article, see Norets (2007, Section 1.5.1.4). ANNs seem to be a method
of choice for high dimensional approximation problems. An intuitive
explanation for excellent performance of ANNs in theory and practice
might be that the basis functions in the ANN case can be tuned, which
provides additional flexibility relative to other approximation methods,
e.g., approximation by polynomials, in which the basis functions are fixed.

An issue that needs to be addressed is whether we can use ANN function
approximation properties to show that the estimation results, e.g., posterior
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expectations, that are obtained with approximated DP solutions converge
to the exact ones as the approximation precision improves. Although there
are a lot of different results available for the consistency and convergence
rates for ANN function approximation, the result we could use to show
the consistency of the estimated posterior expectations does not seem
to be available in the ready-to-use form. In this article, I derive such a
result (consistency of ANN approximations in the sup norm) from the
contributions of White (1990), Hornik et al. (1989), and Chen (2007).

Section 2 of the article sets up a DDCM and outlines an MCMC
estimation procedure. Section 3 introduces ANNs and derives necessary
theoretical results. A DDCM used for experiments is described in
Section 4.1. The corresponding MCMC algorithm is given in Section 4.2.
The ANN approximation quality is evaluated in Section 4.3. Section 4.4
presents estimation results.

2. DDCM AND MCMC

A DDCM is a single agent model. Each time period t the agent chooses
an alternative dt from a finite set of available alternatives D(st). The per-
period utility u(st , dt ; �) depends on the chosen alternative, current state
variables st ∈ S , and a vector of parameters � ∈ �. The state variables are
assumed to evolve according to a controlled first order Markov process
with a transition law denoted by f (st+1 | st , dt ; �) for t ≥ 1; the distribution
of the initial state is denoted by f (s1 | �). Time is discounted with a factor
�. In the recursive formulation of the problem, the lifetime utility of the
agent or the value function is given by the maximum of the alternative-
specific value functions:

V (st ; �) = max
dt∈D(st )

� (st , dt ; �) (1)

� (st , dt ; �) = u(st , dt ; �) + �E�V (st+1; �) | st , dt ; ��� (2)

This formulation embraces a finite horizon case if time t is included in the
vector of the state variables.

In estimable DDCMs, some extra assumptions are usually made. First
of all, some of the state variables are assumed to be unobservable for
econometricians (the agent observes st at time t .) Let’s denote the
unobserved state variables by yt and the observed ones by xt . Examples of
unobservables include taste idiosyncrasy, ability, and health status. Using
the unobserved state variables is a way to incorporate random errors
in DDCMs structurally. Some of the state variables could be common
to all individuals in a dataset. Let’s denote these common states by zt .
We assume that zt are unobserved (the case of observed zt would be
simpler.) To avoid modeling the interactions between agents, it is assumed
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that the evolution of zt is not affected by individual states and decisions.
Introducing common states zt is a way to model dependence across
observations in the sample. Thus, the state variables are separated into
three parts st = (zt , xt , yt), and they evolve according to f (st+1 | st , d ; �) =
p(zt+1 | zt ; �)p(xt+1, yt+1 | xt , yt , zt , d ; �). The set of the available alternatives
D(st) is assumed to depend only on the observed state variables. Hereafter,
it will be denoted by D without loss of generality.

There is a consensus in the literature that it is desirable to allow for
individual heterogeneity in panel data models. Examples of individual
heterogeneity in DDCMs include individual specific time discount rates
and individual specific intercepts or coefficients in the per-period utility
function that would represent taste idiosyncrasies. To allow for that,
let’s assume that the parameter vector � contains individual specific
components �i1 and common components �2 and the prior p(�i1 | �2)p(�2)
is specified. The common parameters �2 may include components that
define p(�1 | �2) and do not affect the DP.

A data set that is usually used for the estimation of a dynamic discrete
choice model consists of a panel of I individuals. The observed state
variables and the decisions are known for each individual i ∈ �1, � � � , I � for
T periods: (x , d) = �xt ,i , dt ,i ; t = 1, � � � ,T ; i = 1, � � � , I �. The number of time
periods T is assumed to be the same for each individual only to simplify
the notation. The likelihood function is given by the integral over the
latent variables:

p(x , d | �2) =
∫

p(x , d , y, �1, z | �2)d(y, �1, z), (3)

where y = �yt ,i ; t = 1, � � � ,T ; i = 1, � � � , I �, z = �zt ; t = 1, � � � ,T �, and �1 =
��i1; i = 1, � � � , I �. Because of the high dimensionality of the integral
computing the likelihood function is infeasible for richly specified DDCMs.

In a Bayesian framework, the high dimensional integration over the
latent variables can be handled by employing MCMC for exploring the
joint posterior distribution of the latent variables and parameters. As was
shown in Norets (2009), it is convenient to use the variables

�� = ���t ,d ,i = u(st ,i , d ; �) + �E [V (st+1; �) | st ,i , d ; �)]
− E [V (st+1; �) | st ,i , d̄ ; �)],∀i , t , d� (4)

as the latent variables in the MCMC algorithm instead of a part of yt ,i ,
where d̄ is a chosen base alternative. Let’s denote the part of yt ,i substituted
with ��t ,i by �t ,i and the remaining part by 	t ,i ; thus yt ,i = (�t ,i , 	t ,i). To save
space it is assumed below that p(�t ,i | zt , xt ,i , 	t ,i , zt−1, xt−1,i , 	t−1,i , dt−1,i ; �i) =
p(�t ,i | zt , xt ,i , 	t ,i ; �i). However, this assumption is not necessary in what
follows.
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The joint posterior distribution of the parameters and latent variables
will be proportional to the joint distribution of the data, the parameters,
and the latent variables

p(�1, �2,�� , 	, z | x , d) ∝ p(d ,�� , �1, �2, 	, z, x),

which in turn can be decomposed into the product of marginals and
conditionals:

p(d ,�� , �1, �2, 	, z, x) =
T∏
t=1

[ I∏
i=1

(
p(dt ,i |��t ,i)p(��t ,i | xt ,i , 	t ,i , zt ; �i1, �2)

· p(xt ,i , 	t ,i | xt−1,i , 	t−1,i , zt−1, dt−1,i ; �i1, �2)
)

· p(zt | zt−1, �2)
]

·
[ I∏

i=1

p(�i1 | �2)
]

· p(�2)� (5)

The Gibbs sampler can be used to simulate a Markov chain which would
have the stationary distribution equal to the posterior. The densities of
the Gibbs sampler blocks: p(�i1 |��i , �2, 	i , z, di , xi), p(�2 |�� , 	, z, d , x),
p(��t ,i | �i1, �2, 	t ,i , zt ,i , dt ,i , xt ,i), p(	t ,i |��t ,i , �i1, �2, 	t−1,i , 	t+1,i , zt ,i , dt ,i , xt ,i),
and p(zt |��t , �1, �2, 	t , zt+1, zt−1, dt , xt) are proportional to (5). If
p(��t ,i | �, xt ,i , 	t ,i , zt) can be quickly computed, then (5) (and, thus, the
kernels of the densities of the Gibbs sampler blocks) can be quickly
computed as well. Therefore, it is possible to use the Metropolis-within-
Gibbs algorithm to simulate the chain. An example of the MCMC
algorithm for a specific model is presented in Section 4.2.

As evident from (4), computing the value of the joint density (5)
will require computing the differences in expected value functions
F (s, d , �) = E [V (st+1; �) | s, d ; �)] − E [V (st+1; �) | s, d̄ ; �)]. Let F (s, �) =
�F (s, d , �), d ∈ D� be a vector of the differences in expected value functions
corresponding to all available alternatives, the same current state s, and
the parameter vector �. Solving the DP and computing F (s, �i1, �2) for
each observation i = 1, � � � , I at each MCMC iteration would be infeasible.
Instead, ANNs can be used to approximate F (�) beforehand of the
estimation procedure. The following sections explore this approach.

3. FEEDFORWARD ANN

3.1. Definition of Feedforward ANN

It is beyond the scope of this article to survey the literature on
artificial neural networks and their (potential) applications in economics.
For general information, history, and econometric perspective on ANN,
the reader is referred to the work by Kuan and White (1994). Rust (1996)
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discusses the application of neural networks to function approximation
problems in the context of numerical dynamic programming. Cho and
Sargent (1996) consider applications of neural networks in dynamic
economics and game theory.

The purpose of this section is to provide information on artificial
neural networks relevant to applications in DDCM estimation. The section
describes a particular type of artificial neural networks, feedforward
networks (FFANN), that are well suited for function approximation
problems. Figure 1 shows the structure of a multilayer FFANN that
transforms the input vector x ∈ Rn into the output vector y ∈ Rm . The
network consists from a number of nodes called neurons. The neurons
are grouped into layers. The outputs of the neurons on the layer i − 1
are used as the inputs for each neuron on the next layer i . The inputs
for the first level are the network inputs x . The outputs of the last layer
are the network outputs. The neuron j on the level i multiplies the inputs
yi−1 = (yi−1

1 , � � � , yi−1
Ni−1

) by the connection weights wij = (wij
l , � � � ,w

ij
Ni−1

)T and
transforms the sum of the weighted inputs into a scalar output yij :

yij = f
( Ni−1∑

l=1

yi−1
l wij

l

)
= f (yi−1wij), i = 1, � � � , k, j = 1, � � � ,Ni , (6)

FIGURE 1 Multilayer feedforward neural network.
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where k is the number of layers, Ni is the number of neurons in the layer
i , and f (�) is called activation function. The logistic sigmoid f (z) = 1/(1 +
exp �−z�) is a popular choice for the activation function. The activation
functions do not have to be the same for all neurons. The identity function
f (z) = z is sometimes used for the neurons on the last (output) layer. It is
standard practice to add an extra input equal to 1 to each neuron. This is a
way to introduce intercepts (called biases in the ANN literature) in addition
to the coefficients (weights) in (6).

An explicit formula for computing the output for a two-layer network
with one-dimensional output might be helpful for understanding the
general case:

y = y21 = F̂ (x ;w) = f

 N1∑
l=1

w21
l f

 m∑
j=1

w1l
j xj

 �

Let F (x) denote the function we wish to approximate by a neural network.
The connection weights w are adjusted so that the neural network F̂ (x ;w)
fits F (x). The process of adjusting the weights is called learning or
training. Training is performed on a dataset �xj , yj , j = 1, J �, where yj is
equal to F (xj) perhaps with some noise. The method of least squares is the
most common way to adjust the weights:

min
w

S(w) = min
w

∑
j

[yj − F̂ (xj ;w)]2 = min
w

∑
j

e j(w)2�

If the activation function is differentiable then gradient methods can be
used to perform the minimization. In the ANN literature the gradient
descent algorithm is referred to as the back error propagation. The
derivatives are computed by the chain rule: S ′(w) = 2e ′(w)T e(w). More
sophisticated optimization methods, such as conjugate gradient algorithms
and quasi-Newton methods, can be used to increase the training speed.
According to the Matlab manual, the Levenberg–Marquardt algorithm
is the fastest method for training moderate-sized FFANN (up to several
hundred weights). My experiments with a few other algorithms (not
implemented in Matlab) confirm this claim. The Levenberg–Marquardt
algorithm iteratively updates the weights according to

wq+1 = wq − [e ′(wq)T e ′(wq) + 
I ]−1e ′(wq)T e(wq)�

If the scalar 
 is small then the method works as a quasi-Newton method
with the Hessian approximated by e ′(w)T e ′(w) (computing actual Hessian
would be very time consuming.) If 
 is large then the method works as
the gradient descent algorithm with a small step. The Newton method
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performs considerably better than the gradient descent algorithm near
the optimum. Thus, after successful iterations (the ones that decrease
S(w)) 
 is decreased; otherwise it is increased. For large FFANNs conjugate
gradient methods might perform better than the Levenberg–Marquardt
algorithm.

The training methods mentioned above are local optimization
methods. There is no guarantee that they will find the global minimum.
The theoretical results on the consistency of ANN approximations
do require finding the global minimum. Therefore, running training
algorithms for several initial values is advisable. In experiments on
approximating the expected value function by a FFANN the Matlab
implementation of the Levenberg–Marquardt algorithm performed very
well. No cases of getting stuck in a very bad local minimum were detected.

3.2. Consistency of FFANN Approximations

The consistency and convergence rates for ANN function
approximation were examined by a number of authors. However, the
result we would need for approximation of the DDCM solutions does not
seem to be available in the literature in the ready-to-use form. In this
section, we deduce the necessary result building on the existing theory of
ANN approximation.

The proof of Theorem 1.3 in Norets (2007) implies that the uniform
(in sup norm) convergence in probability of the expected value function
approximation would imply the consistency of the approximated posterior
expectations. It was also shown in Norets (2007) that the expected value
function is continuous in the state variables and parameters under suitable
continuity and compactness assumptions on the primitives of DDCMs.
At the same time, the differentiability of the expected value function
with respect to the state variables and parameters does not seem to have
been established for a general DDCM. Therefore, it would be desirable
to have the consistency of the ANN approximations in sup norm for
continuous functions on compact spaces. However, the consistency results
in the ANN literature are available for convergence in Lp norm and/or
for smooth functions (Barron, 1994; Chen and White, 1999; White, 1990).
The required consistency result is derived below from the contributions of
White (1990), Hornik et al. (1989), and Chen (2007).

Following White (1990) let’s consider a FFANN sieve estimator. For
a survey of sieve estimation see Chen (2007). Let � denote a set of
continuous functions on a compact space � with sup norm ‖�‖. Let (X ,Y )
be random variables defined on a complete probability space. Assume
that X has a positive density on � , E(Y |X = x) = F (x), and F ∈ � . Let
�xj , yj�nj=1 denote an i.i.d. sample of (X ,Y ). The consistency results are
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proven below for randomly generated �xj�nj=1. Experiments show that using
low discrepancy sequences on � instead of randomly generated ones does
not improve the approximation quality.

A FFANN with one hidden layer consisting of q neurons and a linear
activation function for the neuron on the output layer is described by

F̂ (x ;w, q) = w21
0 +

q∑
k=1

w21
k f

w1k
0 +

∑
j

w1k
j xj

 �

Let

T (q ,�) =
{
F̂ (�;w, q) :

q∑
k=0

|w21
k | < � and

q∑
k=1

∑
j

|w1k
j | < q�

}
be a set of FFANNs with q neurons on the hidden layer and the weights
satisfying a restriction on their sum norm. For specified sequences �qn� and
��n�, T (qn ,�n) is called a sieve. The sieve estimator F̂n(�) is defined as the
solution to the least squares problem:

min
F̂ ∈T (qn ,�n )

1
n

n∑
j=1

[yj − F̂ (xj)]2� (7)

The parameters qn and �n determine the flexibility of approximating
functions F̂ ∈ T (qn ,�n). As they increase to infinity the set T (qn ,�n) will
become dense in � . The flexibility of approximating functions should
depend on the number of observations n in such a way that overfitting and
underfitting are avoided at the same time. Specific restrictions on qn and
�n that achieve this are given below. Also, introducing a finite bound on
the weights �n makes T (qn ,�n) compact. White (1990) proves a version of
the following theorem for Lp norm. Here, I present a proof for sup norm.

Theorem 1. Assume that the activation function f is Lipschitz continuous
and it is a squashing function (f is non-decreasing, limx→−∞ f (x) = 0,
limx→+∞ f (x) = 1). Also assume that qn ,�n ↗ ∞, �n = o(n1/4), and
�4

nqn log(�nqn) = o(n). Under these conditions there exists a measurable sieve
estimator F̂n(�) defined by (7) and for any 	 > 0

lim
n→∞

P (‖F − F̂n‖ > 	) = 0�

Proof. Theorem 3.1 in Chen (2007) specifies five conditions under which
an abstract extremum sieve estimator will be consistent. Let’s show that
these five conditions are satisfied.
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Condition 3.1: E [Y − g (X )]2 is uniquely minimized over g ∈ � at F
and E [Y − F (X )]2 < ∞. This identification condition is satisfied in our
case because F (x) ≡ E(Y |X = x) is a minimizer and it is unique since
functions in � are continuous and the density of X is positive on � .

Condition 3.2: The sequence of sieves is increasing (T (qn ,�n) ⊂
T (qn+1,�n+1)) and

⋃∞
n=1 T (qn ,�n) is dense in � . The denseness of the set

of one hidden layer FFANNs with unconstrained weights
⋃∞

n=1 T (n,∞) in
the set of continuous functions on compacts is proven in Hornik et al.
(1989), Theorem 2.4. The condition is satisfied since ∪∞

n=1T (qn ,�n) =⋃∞
n=1 T (qn ,∞) for qn ,�n → ∞.

Condition 3.3: −E [Y − g (X )]2 is upper semicontinuous in g w.r.t ‖�‖.
The condition is trivially satisfied since E [Y − g (X )]2 is continuous.

Condition 3.4: T (qn ,�n) is compact under ‖�‖. Since any element in
T (qn ,�n) is defined by a vector of weights belonging to a compact set and
the activation function f is continuous, any sequence in T (qn ,�n) will have
a convergent subsequence with the limit in T (qn ,�n), thus T (qn ,�n) is
compact.

Condition 3.5: (Uniform convergence over sieves) plimn→∞
supg∈T (qn ,�n )

| 1
n

∑n
j=1[yj − g (xj)]2 − E [Y − g (X )]2 | = 0. This condition

is proven in White (1990, pp. 543–544). That is where the Lipschitz
continuity of f and the specific conditions on qn and �n are used. �

4. EXPERIMENTS

Experiments in this section demonstrate how well FFANNs can
approximate expected value functions and what the performance gains of
using FFANNs in MCMC estimation of DDCMs can be. The Rust (1987)
model of optimal bus engine replacement with added serially correlated
unobservables is used for experiments.

4.1. Rust’s (1987) Model

In Rust’s model, a maintenance superintendent of a bus transportation
company decides every time period whether to replace a bus engine. The
observed state variable is the bus mileage xt since the last engine
replacement. The control variable dt takes on two values: 2 if the engine
is replaced at t , and 1 otherwise. The per-period utility function of the
superintendent is the negative of per-period costs

u(xt , 	t , �t , dt ; �) =
{
�1xt + 	t if dt = 1
�2 + �t if dt = 2,

(8)
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where 	t and �t are the unobserved state variables, �1 is the negative of
per-period maintenance costs per unit of mileage, �2 is the negative of the
costs of engine replacement. Rust assumes that 	t and �t are extreme value
independently identically distributed (IID). I assume �t is IID N (0, h−1

� )
truncated to [−�̄, �̄], 	t is N (�	t−1, h−1

	 ) truncated to E = [−	̄, 	̄], and 	0 = 0.
The bus mileage since the last replacement is discretized into M = 90
intervals X = �1, � � � ,M �. The observed state xt evolves according to

P (xt+1 | xt , dt ; ) =
{
�(xt+1 − xt ; ) if dt = 1
�(xt+1 − 1; ) if dt = 2

(9)

and

�(�x ; ) =


1 if �x = 0
2 if �x = 1
3 if �x = 2
0 if �x ≥ 3�

(10)

Rust assumes that if the mileage reaches the state M it stays in this state
with probability 1. I instead assume that the engine is replaced at t if xt
exceeds M − 1, which slightly simplifies the DP solution. In the recursive
formulation, the life-time utility for xt < M is given by

V (xt , 	t , �t ; �) = max
{
�1xt + 	t + �

3∑
k=1

kE [V (xt + k − 1, 	′, �′; �) | 	t ; �],

�2 + �t + �EV2(�)

}
, (11)

where

EV2(�) =
3∑

k=1

kE [V (k, 	′, �′; �) | 0; �] (12)

E [V (xt+1, 	′, �′; �) | 	t ; �] =
∫

V (xt+1, 	′, �′; �)dP (	′, �′ | 	t ; �)� (13)

For xt ≥ M ,

V (xt , 	t , �t ; �) = �2 + �t + �EV2(�)� (14)

4.2. Gibbs Sampler

Each bus i is observed over Ti time periods: �xt ,i , dt ,i�
Ti
t=1 for i = 1, � � � , I .

The parameters are � = (�, , �); h	 and h� are fixed for normalization.
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The latent variables are ���t ,i , 	t ,i�
Ti
t=1 i = 1, � � � , I

��t ,i = xt ,i�1 − �2 + 	t ,i − �t ,i + Ft ,i(�, 	t ,i),

where

F (xt ,i , 	, �) = Ft ,i(�, 	)

= �

3∑
j=1

j(E [V (xt ,i + j − 1, 	′, �′; �) | 	; �] − EV2(�))� (15)

The compact space for parameters � is defined as follows: �i ∈ [−�̄, �̄], � ∈
[−�̄, �̄], h	 ∈ [hl

	, hr
	 ], and  belongs to a three dimensional simplex. The

joint distribution of the data, the parameters, and the latent variables is

p(�; �xt ,i , dt ,i ;��t ,i , 	t ,i�
Ti
t=1; i = 1, � � � , I )

= p(�)
I∏

i=1

Ti∏
t=1

[p(dt ,i |��t ,i)p(��t ,i | xt ,i , 	t ,i ; �)

· p(xt ,i | xt−1,i ; dt−1,i ; )p(	t ,i | 	t−1,i , �, h	)],

where p(�) is a prior density for the parameters; p(xt ,i | xt−1,i ; dt−1,i ; ) is
given in (9) and

p(x1,i | x0,i ; d0,i ; ) = 1�1�(x1,i)—all the buses start with a new engine;

p(dt ,i |��t ,i) =


1, if dt ,i = 1,��t ,i ≥ 0
0, if dt ,i = 1,��t ,i < 0
1, if dt ,i = 2,��t ,i ≤ 0
0, if dt ,i = 2,��t ,i > 0

(16)

p(��t ,i | xt ,i , 	t ,i ; �) = exp �−0�5h�(��t ,i − [xt ,i�1 − �2 + 	t ,i + Ft ,i(�, 	t ,i)])2�
(17)

· 1[−�̄,�̄](��t ,i − [xt ,i�1 − �2 + 	t ,i + Ft ,i(�, 	t ,i)]) (18)

· h0�5
�√

2�[�(�̄h0�5
� ) − �(−�̄h0�5

� )] ,

p(	t ,i | 	t−1,i , �) = h1/2
	 exp �−0�5h	(	t ,i − �	t−1,i)

2�√
2�[�([	̄ − �	t−1,i]h0�5

	 ) − �([−	̄ − �	t−1,i]h0�5
	 )]1E(	t ,i)�

(19)
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Gibbs Sampler Blocks
The Gibbs sampler blocks for ��t ,i | � � � will have a normal truncated

distribution proportional to (17) and (18), and also truncated to R+ if
dt ,i = 1 or to R− otherwise. An algorithm from Geweke (1991) is used to
simulate efficiently from the normal distribution truncated to R+ (or R−.)
Acceptance sampling handles the truncation in (18).

The density for 	t ,i | � � � is proportional to

p(	t ,i | � � � ) ∝ exp �−0�5h�(��t ,i − [xt ,i�1 − �2 + 	t ,i + Ft ,i(�, 	t ,i)])2�
�([	̄ − �	t−1,i]h0�5

	 ) − �([−	̄ − �	t−1,i]h0�5
	 )

· 1[−�̄,�̄](��t ,i − [xt ,i�1 − �2 + 	t ,i + Ft ,i(�, 	t ,i)])
· exp�−0�5h	(	t+1,i − �	t ,i)

2 − 0�5h	(	t ,i − �	t−1,i)
2� · 1E(	t ,i)�

(20)

Draws from this density are obtained from a Metropolis step with a normal
truncated transition density proportional to (20). The blocks for 	t ,i with
t = 0 and t = Ti will be similar.

Assuming a normal prior N (�, h�) truncated to [−�̄, �̄],

p(� | � � � ) ∝ exp �−0�5h�
∑

i ,t(��t ,i − [xt ,i�1 − �2 + 	t ,i + Ft ,i(�, 	t ,i)])2�∏
i ,t �([	̄ − �	t−1,i]h0�5

	 ) − �([−	̄ − �	t−1,i]h0�5
	 )

·
∏
i ,t

1[−�̄,�̄](��t ,i − [xt ,i�1 − �2 + 	t ,i + Ft ,i(�, 	t ,i)])

· exp�−0�5h̄�(� − �̄)2� · 1[−�̄,�̄](�), (21)

where h̄� = h� + h	
∑

i

∑Ti
t=2 	

2
t−1,i and �̄ = h̄−1

� (h�� + h	
∑

i

∑Ti
t=2 	t ,i	t−1,i).

To draw from this density, I use a Metropolis step with a normal truncated
transition density proportional to (21).

Assuming a Dirichlet prior with parameters (a1, a2, a3),

p( | � � � ) ∝ exp
{

− 0�5h�
∑
i ,t

(��t ,i − [xt ,i�1 − �2 + 	t ,i + Ft ,i(�, 	t ,i)])2
}

·
∏
i ,t

1[−�̄,�̄](��t ,i − [xt ,i�1 − �2 + 	t ,i + Ft ,i(�, 	t ,i)])

·
3∏

j=1


nj+aj−1
j , (22)
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where nj = ∑
i

∑Ti
t=2 1�j−1�(xt ,i − xt−1,i). A Metropolis step with a Dirichlet

transition density proportional to (22) is used in this block.

p(� | � � � ) ∝ p(�) exp
{

− 0�5h�
∑
i ,t

(��t ,i − [xt ,i�1 − �2 + 	t ,i + Ft ,i(�, 	t ,i)])2
}

· 1[−�̄,�̄]×[−�̄,�̄](�) ·
∏
i ,t

1[−�̄,�̄](��t ,i − [xt ,i�1 − �2 + 	t ,i + Ft ,i(�, 	t ,i)])�

To draw from this density, I use the Metropolis–Hastings random walk
algorithm. The proposal density is normal truncated to [−�̄, �̄] × [−�̄, �̄]
with a mean equal to the current parameter draw and a fixed variance.
The variance matrix is chosen so that the acceptance probability would be
between 0.2–0.3.

4.3. Evaluating ANN Approximation Quality

The posterior simulator outlined above requires computing the
differences in expected value functions F (xt ,i , 	mt ,i , �

m) defined in (15) for
each parameter draw �m and each observation (i , t) in the sample. This
section shows how FFANNs can be used for approximating F (�).

A FFANN is trained and validated beforehand of the estimation
procedure on a sample of inputs and outputs. The inputs include
parameters and states:

�xji , 	j , �j1, �
j
2, �

j , j1, 
j
2, 

j
3; i = 1, � � � , 90; j = 1, � � � , 2200�. The sample of

inputs is generated randomly from a distribution on the state and
parameter space. The support of this distribution should include all the
relevant parts of the state and parameters space. At the same time, it
should not be unnecessarily large. This can be achieved with the following
procedure. First, estimate the posterior distribution for the model (or its
simplified version, e.g., model without heterogeneity or serial correlation)
using a very crude but fast DP solution method, e.g., DP solution on a small
random grid.1 Generate the inputs from a distribution with the support
that includes the support of the estimated posterior. Train a FFANN on
this inputs and corresponding outputs (outputs computation is discussed
below). For a prior distribution with the same support as the distribution
used for generating the inputs, estimate the posterior using the FFANN. If
the posterior puts considerable weight on the regions near the boundary

1By solution of the DP on a random grid I mean solution of the DP by the value function
iteration method obtained on a discretized state space, where the discretization points are chosen
randomly rather than deterministically. Rust (1997) shows that this type of algorithms breaks the
curse of dimensionality for DDCMs. Norets (2008) discusses this solution method and possible
improvements in detail in the context of the bus engine replacement problem with serially
correlated unobservables.
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of the prior support, then the procedure should be repeated with a larger
support for the distribution of inputs and the prior. For the model used in
this article repeating the procedure was not necessary.

In the experiments described below, the inputs are generated from
the following distributions: �

j
1 ∼ U [−0�006, 0], �

j
2 ∼ U [−25,−5], �j ∼

U [0, 0�99], 	j ∼ U [−3�8, 3�8],  ∼ Dirichlet(34, 64, 2), and xji = i . Using low
discrepancy sequences instead of random draws did not affect the results.
For large and complicated models, more involved inputs could be used,
e.g., some functions of states and parameters, and the value functions
for the DP in which shocks are replaced by zeros. The latter could also
be subtracted from the difference in expected value function to obtain a
better behaved output.

Since the exact DP solution is not available for the model with serially
correlated unobservables the following approximations are used as etalon
outputs. For each �j the DP is solved on Ñ = 100 different random grids.
Each grid consists of N̂ = 100 randomly generated points on the space for
� and 	. The differences in the expected value functions are computed
for each random grid. The average over the grids, denoted by F ji

Ñ ,N̂ ,
is used as the etalon output. This procedure efficiently produces good
approximations of F (�). Let’s illustrate this for the model with extreme
value IID unobservables 	t and �t .

Under the extreme value IID assumption, the integration over the
unobservables can be performed analytically (see Rust, 1994), the exact
DP solution can be quickly computed, and solutions on the random grids
can be compared with the exact solution. Figure 2 shows densities of the
scaled difference between the exact solution and the solution on random

FIGURE 2 Densities of the difference between the exact solution and the solution on random
grids. The model with extreme value IID unobservables. The dashed line is the density of
[F (xji , �j ) − F ji

1,100]h0�5
� , the dotted line is the density of [F (xji , �j ) − F ji

10,100]h0�5
� , and the solid line is

the density of [F (xji , �j ) − F ji
100,100]h0�5

� .
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grids [F (xji , �j) − F ji

Ñ ,N̂
]h0�5

� (for IID unobservables F (�) does not depend on
	). Scaling is performed to facilitate the comparison of the approximation
error and the magnitude of the random shocks in the model. The densities
were estimated by kernel smoothing.

The precision of the DP solution obtained by averaging the results
over 100 random grids with 100 points in each grid is about the same
as for the solution obtained on one random grid with 10000 points.
However, the former algorithm works about 100 times faster since the
number of operations performed for one Bellman equation iteration is
roughly proportional to the square of the number of points in the grid.
See Section 1.5.1.4 of Norets (2007) for further discussion of this issue.
The maximal approximation error for F ji

100,100 does not exceed 3% of the
standard deviation of the IID shocks in the model.

Having illustrated the high quality of data used for training ANNs let’s
look at the quality of ANN approximations. The experiments below were
conducted on a three layer FFANN that was trained in Matlab by the
Levenberg–Marquardt algorithm. The network layers contained 8, 10, and
1 neurons correspondingly (it will be referred below as the 8-10-1 FFANN).
First 1500 points in the data were used for training, the remaining data
were used for validation.

For the first experiment, the data were generated from the model with
Gaussian serially correlated unobservables. Figure 3 shows the distributions
of the residuals scaled by the standard deviation of the IID shocks in
the model e ji = (F ij

100,100 − F̂ (xji , 	j , �j ;w))h0�5
� for the training and validation

parts of the data.

FIGURE 3 Densities of residuals e ji (the dotted line is for the validation part of the sample). The
model with serially correlated unobservables.
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FIGURE 4 Fitted values F̂ (xji , 	j , �j ;w) (the dotted lines) and F ji
100,100 (the solid lines) as functions

of one input component. The model with serially correlated unobservables. The horizontal axes
are: (a) �1, (b) �2, (c) �, and (d) 	.

As can be seen Fig. 3, the approximation quality for the validation
part of the data is the same as for the training part. This suggest that no
overfitting occurred.

In addition to the randomly generated validation part of the sample,
F ji
100,100 were computed for inputs with one component changing over a
relevant range and the other components fixed at (x , 	, �1, �2, �, 1, 2, 3) =
(55, 0,−0�003,−10, 0�5, 0�34, 0�64, 0�02). Figure 4 shows these F ji

100,100 and
the corresponding fitted values.

As Figs. 4 and 2 demonstrate, the values F ji
100,100 used for neural network

training are noisy approximations to the exact differences in expected
value functions. It is not surprising since they were obtained by solving the
dynamic program on random grids. The exact difference in the expected
value functions should be a smooth function. Since the fitted function
F̂ (�;w) tends to smooth out the noise, the actual error of the neural
network approximation might be smaller on average than the residuals
described by Fig. 3.

The quality of FFANN approximations can be further explored
for the model with extreme value IID unobservables since the exact
approximation error can be computed in this case. Figure 5 compares the
densities of the exact approximation error for FFANNs and DP solutions
on random grids.
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FIGURE 5 Densities of the approximation error for FFANNs and DP solutions on random grids.
The model with extreme value IID unobservables. The dashed line is for a FFANN trained on
exact data, the dotted line is for a FFANN trained on F ji

100,100, and the solid line is for F ji
100,100.

In this particular example, the noise in the training data does not
affect the FFANN approximation quality as evidenced by similar results for
FFANNs trained on exact and noisy data.

Figure 6 presents a similar comparison of the FFANN and random
grid DP solution approximations for the model with serially correlated
unobservables. Unfortunately, the exact DP solution and, thus, the
exact approximation errors are not available for this model. Therefore,
the figure shows the densities of the scaled residuals e ji = (F ji

100,100 −
F̂ (xji , 	j , �j ;w))h0�5

� for an 8-10-1 FFANN and the scaled differences
[F ji

100,100 − F ji
10,100]h0�5

� .

FIGURE 6 Densities of e from the neural network (the dotted line) and from the DP solution
on a random grid (the solid line). The model with serially correlated unobservables.
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As can be seen from Fig, 6, F̂ (xji , 	j , �j) and F ji
10,100 provide comparable

precision in approximating F ji
100,100. Since the variance of F (xji , 	j , �j) −

F ji
10,100 is considerably larger than the variance of F (�j , xi) − F ji

100,100 (see
Fig. 2), we argue that F̂ (xji , 	j , �j) and F ji

10,100 provide comparable precision
in approximating F (xji , 	j , �j). Looking back at Fig. 5 we see that for the
model with extreme value IID unobservables, the approximation precision
of an 8-10-1 FFANN is comparable to the precision of F ji

100,100, which is
better than that of F ji

10,100 we obtain for the model with serially correlated
unobservables. This can be explained by the fact that the dimension of the
input vector is smaller for the model with extreme value IID unobservables.
Increasing the number of neurons and/or layers in a FFANN improves
the precision, e.g., adding another layer with 10 neurons decreased the
approximation error by two times on average.

Let’s now compare execution times for estimation procedures using
FFANNs approximations and DP solutions on random grids. The posterior
simulator for the model with serially correlated unobservables that uses the
8-10-1 FFANN works 4–5 times faster than the posterior simulator that uses
DP solutions on one random grid with 100 points. Averaging DP solutions
over 10 random grids (which would provide precision comparable to the
8-10-1 FFANN as we argued above) will increase the execution time by
10 times. Thus, for this particular example, the performance gains from
using FFANNs in the posterior simulator could amount to about 40–50
times. In experiments, the MCMC estimation algorithm required at least
1 million draws to converge. The time required for preparing FFANN
training data is less than 2% of the time required for solving the DP on
10 random grids for 1 million parameter draws. The time required for
training an 8-10-1 FFANN is also of similar magnitude. Thus the overall
time saving from using FFANN approximations in DDCM estimation seems
considerable. This claim is confirmed by the performance comparison for
the model with extreme value IID unobservables, which is presented with
the estimation results in the next section. A reader interested in estimation
results for the model with serially correlated unobservables is referred to
Norets (2008) (DP solutions on random grids are used in that article).

4.4. Estimation Results

This section presents estimation results for the model with extreme
value IID unobservables. The advantage of using this model relative to the
model with serially correlated unobservables is that we can characterize
the posterior distributions of parameters with a very high precision. The
integration over the unobservables in solving the DP and in the likelihood
function can be performed analytically. Thus it would be easier to evaluate
the quality of the posterior simulator that uses FFANNs. The posterior
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FIGURE 7 Estimated posterior densities: (a) �1, (b) �2, (c) 1, (d) 2. The solid lines for the
algorithm use the exact DP solutions, and the dashed for the algorithm use the FFANN.

simulator for this model also uses the Metropolis–Hastings algorithm
since the logit-like choice probabilities comprising the likelihood function
contain the expected value functions that do not have an analytical
representation.

Figure 7 shows the posterior densities estimated by the posterior
simulators that use the exact DP solutions and the 8-10-1 FFANN
approximations. The experiments use an artificial dataset consisting of
observations on I = 70 buses (about 4000 mileage/decision points). The
posterior densities were estimated by kernel smoothing over several
simulator runs. The length of the runs was 3 million draws. The simulator
using the 8-10-1 FFANN takes about 1.2 second to produce 1000 draws
from the posterior on a 2002 vintage PC. The simulator that uses the exact
DP solutions works 10 times slower. The estimated densities from both
simulators are very similar.

The model with extreme value IID unobservables could also be
estimated by the algorithm that performs integration numerically as
in the case of the model with serially correlated unobservables. The
Gibbs sampler for this algorithm is the same as the one for the
Gaussian unobservables described in Section 4.2; except here the Gaussian
probability densities are replaced by the densities for the extreme value
distribution.

Figure 8 compares the estimation results for the exact posterior
simulator and the simulator that integrates unobservables numerically and
solves the DP on a random grid with 100 points. The posteriors for 
are not shown in the figure since they are identical for all simulators.
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FIGURE 8 Estimated posterior densities: (a) �1, (b) �2. The solid lines are the simulator using
the exact DP solutions, the other lines are the simulators using DP solutions on different random
grids.

For some random grids the estimated density can be far off as the figure
demonstrates. The simulator that integrates unobservables numerically
and solves the DP on a random grid with 100 points produce 1000
parameter draws in 102 seconds. The same task takes 14 seconds for the
same simulator if it uses an 8-10-1 FFANN instead of DP solutions on a
random grid.

As Fig. 5 from the previous section demonstrates, the approximation
precision of an 8-10-1 FFANN is comparable to the average over 100
DP solutions on random grids with 100 points. If the simulator uses
averages of the DP solutions over several random grids the computing
time will increase proportionally to the number of the random grids
used. Thus, the performance gains from using FFANNs in this example
can reach 729 = (102 · 100/14) times. Estimation experiments in Section
1.5.2 of Norets (2007) suggest that averaging the posterior distributions
estimated with the DP solved on different random grids improves
estimation precision. Nevertheless, this posterior averaging strategy is still
considerably outperformed by a simulator using FFANNs. A comparison of
FFANNs with other approximation methods, e.g., Smolyak polynomials, in
the context of DDCM estimation could be a subject of future work.

In summary, the experiments suggest that application of ANNs in the
MCMC estimation of DDCMs is indeed a promising approach. It is fast
and precise. It can also provide a feasible way to estimate rich DDCMs
with different forms of individual heterogeneity such as serially correlated
unobserved state variables and individual specific parameters.
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