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Abstract We describe an efficient Markov chain
Monte Carlo algorithm for estimation of a finite
beta mixture. The algorithm employs Metropolis-
Hastings independence chain for simulation of the
parameters of beta distributions. The Metropolis-
Hastings transition densities that well approximate
the target distributions are constructed from the
limiting sampling distribution of the method of mo-
ments estimator, which is readily available for beta
distribution. This technique can be useful for other
models with analytically tractable method of mo-
ments estimators. The algorithm demonstrated ex-
cellent performance in a Monte-Carlo study.

Keywords MCMC · finite mixture · beta
distribution · method of moments

1 Introduction

Finite mixtures of distributions are widely used as
flexible models for univariate and multivariate data
(McLachlan and Peel (2000)). It is well known that
a finite beta mixture can consistently estimate den-
sities on [0,1] from large nonparametric classes,
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see Rousseau (2010) for recent rates of conver-
gence results. Bouguila et al. (2006) described a
Markov chain Monte Carlo (MCMC) algorithm for
estimation of a finite beta mixture.1 Their algo-
rithm follows the Diebolt and Robert (1994) ap-
proach of using latent mixture component indica-
tors and data augmentation in estimation of finite
mixture models. In Bouguila et al. (2006) algo-
rithm, the parameters of beta distributions are sim-
ulated by a Metropolis-Hastings random walk al-
gorithm. Below, we describe a more efficient Metropolis-
Hastings independence chain algorithm for simu-
lation of the parameters of beta distributions. Our
algorithm employs Metropolis-Hastings transition
density based on the sampling distribution of the
method of moments (MOM) estimator for the pa-
rameters of beta.

The Bernstein-von Mises theorem suggests that
the posterior distribution can be approximated by a
normal distribution with a mean equal to the max-
imum likelihood estimator (MLE) and a variance
equal to the sampling variance of the MLE. The
issue of model misspecification, which would re-
quire a modification of the Bernstein-von Mises
theorem, does not seem to be important here as a
finite beta mixture is a very flexible model. Unfor-
tunately, the MLE is not available in closed form

1Bouguila et al. (2006) also describe an expectation
maximization algorithm for estimation of a beta mixture
model.
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for the parameters of beta distribution. The MOM
estimator and an approximation to its sampling dis-
tribution are available analytically. The asymptotic
sampling variance of the MOM estimator is in gen-
eral larger than the variance of the MLE. Thus, the
Metropolis-Hastings transition densities we con-
struct are likely to have heavier tails than the tar-
get distribution. This is a useful property for an in-
dependence chain MCMC algorithm as it implies
uniform ergodicity and thus central limit theorems
for the MCMC algorithm, see Tierney (1994). The
quality of the approximations to the posteriors and
thus the performance of the independence chain
MCMC algorithm depend on how efficient the MOM
estimator is. Experiments demonstrate that the qual-
ity of approximations to the conditional posteri-
ors of the parameters of beta distributions in a fi-
nite beta mixture model is excellent even for small
sample sizes.

More generally, these ideas might be useful for
developing MCMC samplers for models in which
the MLE is not analytically tractable while the method
of moments estimator is. Below, we describe the
model and the MCMC algorithm. Applications of
the algorithm in the context of a larger hierarchi-
cal model can be found in Norets and Tang (2010).
The last section presents a Monte Carlo study that
compares the performance of the random walk and
MOM-based algorithms.

2 The likelihood, prior, and posterior

A random variable pi ∈ (0,1) follows a Beta dis-
tribution with parameters (m js j,(1−m j)s j) if its
density is given by

f (pi|s j,m j) =
Γ (s j)p

s jm j−1
i (1− pi)

s j(1−m j)−1

Γ (s jm j)Γ (s j(1−m j))
.

(1)

It is convenient for our purposes to parameterize a
beta distribution in terms of s j and m j. A density of
a finite beta mixture with M components is defined
as

π(pi|s,m,λ ) =
M

∑
j=1

λ j f (pi|s j,m j),

where λ j is the probability that pi is generated by
component j and s = (s1,s2, . . . ,sM) and likewise
for m and λ .

Let p= {p1, . . . , pN}, pi ∈ (0,1), denote a vec-
tor of observations. The likelihood function for a
finite beta mixture is given by

π(p|m,s,λ ) =
N

∏
i=1

M

∑
j=1

λ j f (pi|s j,m j) (2)

Let Zi be a latent variable such that Zi = j if pi
is drawn from Beta(s j,m j). Let Z = {Zi}i≤N . The
distribution of observables conditional on the pa-
rameters and latent variables has a more tractable
form than (2),

π(p|m,s,λ ,Z) = ∏
i

f (pi|sZi ,mZi). (3)

We specify the joint prior of (m,s,λ ,Z) as follows:
λ is independent from the (s,m) and all coordi-
nates in (s,m) are mutually independent. Further-
more, m j ∼ Beta(nm1

,nm0
), s j ∼ Gamma(as,bs)

for all j and λ ∼Dirichlet(a, .,a), where nm1
, nm0

,
as, bs, and a are all known positive scalars. The
joint prior for (m,s,λ ,Z) is then given by

π(m,s,λ ,Z) = π(Z|m,s,λ )π(m,s,λ ) (4)

∝ ∏
j

[
λ

∑i 1{Zi= j}
j ·λ a−1

j

·m
nm1
−1

j (1−m j)
nm0
−1

·sas−1
j exp{−s j/bs}

]
The joint posterior, π(m,s,λ ,Z|p), is proportional
to the product of (3) and (4).

3 Posterior Simulations Using MCMC

In this section we describe a Metroplis-within-Gibbs
MCMC algorithm for exploring the joint posterior
π(m,s,λ ,Z|p).2 The algorithm divides the vector
of parameters and latent variables into the follow-
ing Gibbs sampler blocks: {s j} j≤M , {m j} j≤M , {Zi}i≤N ,
and λ . The density (or probability mass function
in case of Zi) for each block is proportional to the
product of (3) and (4). The blocks for Zi and λ

2See Tierney (1994) or Geweke (2005) for a discussion
of hybrid MCMC algorithms.
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are standard (multinomial and Dirichlet distribu-
tions correspondingly). The distributions of blocks
for s j and m j do not seem to have known closed
forms. Therefore, we use a Metropolis-Hastings
algorithm for these blocks. If good approximations
to the conditional posteriors of s j and m j are avail-
able one can construct an efficient Metropolis-Hastings
independence chain algorithm, in which the ap-
proximations to the conditional posteriors serve as
the Metropolis-Hastings transition densities. In the
introduction we explain why the sampling distri-
bution of the method of moment estimator pro-
vides a good approximation to the posterior dis-
tribution. The implied approximations to the con-
ditional posteriors of s j and m j are normal (we de-
rive them in Appendix A below). Since the sup-
ports of s j and m j ([0,∞) and [0,1] correspond-
ingly) are not the same as the support of a nor-
mal, we use a beta transition density for m j and a
gamma transition density for s j that have the same
means and variances as the corresponding normal
approximations. We also take into account the part
of the posterior that corresponds to a Beta(nm1

,nm0
)

prior for m j and a Gamma(as,bs) prior for s j in
constructing the Metropolis-Hastings transition den-
sities qs(st+1

j |mt ,Zt) and qm(mt+1
j |st+1,Zt) given

correspondingly by

Gamma

at
j +as−1 ,

(
1
bt

j
+

1
bs

)−1
 (5)

Beta
(
n1

t, j +nm1
−1,n0

t, j +nm0
−1
)
, (6)

where t is the MCMC iteration index and expres-
sions for (at

j,b
t
j,n

1
t, j,n

0
t, j) are derived from the sam-

pling distribution of the method of moments es-
timator in Appendix A. We now give a complete
description of the MCMC algorithm.

Step 0 : Draw the initial (Z0,λ 0,s0,m0) from
the joint prior. Alternatively, one could draw the
initial (λ 0,s0,m0) from the joint prior and simu-
late each Z0

i independently from the multinomial
distribution with parameters N = 1 and λ 0.

Step 1 : Let (Zt ,λ t ,st ,mt) denote draws from
the t-th iteration (t ≥ 0). For all j ≤ M, draw a
candidate for st+1

j from the proposal density in (5)
and denote it by s∗j . For each j, with probability
φs(s∗j ,s

t
j), set st+1

j = s∗j and with probability 1−

φs(s∗j ,s
t
j), reject s∗j and set st+1

j = st
j. The expres-

sion for the Metropolis-Hastings acceptance prob-
ability φs(s∗j ,s

t
j) is derived in Appendix B.

Step 2 : For each j, draw a candidate for mt+1
j

from the proposal density in (6) and denote it by
m∗j . For each j, with probability φm(m∗j ,m

t
j), set

mt+1
j = m∗j and with probability 1− φm(m∗j ,m

t
j),

reject m∗j and set mt+1
j = mt

j. The expression for
the Metropolis-Hastings acceptance probability
φm(m∗j ,m

t
j) is derived in Appendix B.

Step 3 : Note for all k,

π(Zi = j|m,s,λ ,Z−i, p) ∝ (7)

λ jΓ (s j)p
s jm j
i (1− pi)

s j(1−m j)

Γ (s jm j)Γ (s j(1−m j))

Hence, draw Zt+1
k from a multinomial distribution

whose kernel is given by (7) evaluated at (st+1
j ,mt+1

j ,λ t
j).

Step 4 : Note,

π(λ |m,s,Z, p) ∝ ∏
j

λ
∑i 1{Zi= j}+a−1
j (8)

Hence, draw λ t+1 from Dirichlet(∑i 1{Zt+1
i = 1}+

a, ...,∑i 1{Zt+1
i = M}+a).

Repeat Steps 1-5 until convergence is attained.

4 Implementation and performance

Bouguila et al. (2006) use a Metropolis-Hastings
random walk (RW) algorithm for transformations
of s j and m j. We implement both the random walk
and the MOM-based independence chain algorithms.
The algorithms are programmed in Matlab and the
code is available online3. The correctness of the al-
gorithms implementation is not rejected by Geweke
(2004) joint distribution tests. Both algorithms seem
to perform reasonably well for estimation of the
function of parameters that are invariant to permu-
tations of the mixture component labels. For a dis-
cussion of MCMC and label switching in mixture
models see Geweke (2007). The approximations
provided by the MOM-based proposals very fre-
quently look almost identical to the target condi-
tional posteriors.

3www.princeton.edu/˜anorets
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To explore the performance of the algorithms
further we conduct a Monte Carlo study. First, we
generate a 100 draws of (m,s,λ ) from a prior. For
each draw of the parameters, we generate a dataset
of 300 observations and run MOM and RW based
algorithms for 100000 iterations. Computing time
for one iteration is about the same for both al-
gorithm as most of the time is spent on drawing
the latent variables. In the first 10000 iterations,
the RW variance parameters are automatically ad-
justed so that the acceptance rate is close to 50%.
The number of mixture components is set to M =

3. The prior hyperparameters used in the study are
nm1

= nm0
= 2, as = 3, bs = 100, and a = 3.

The algorithms’ performance is evaluated by
the relative numerical efficiency (RNE).4 We com-
pute the RNEs for the following permutation in-
variant objects: maxm j, maxs j, and π(p|m,s,λ ),
where p is set to one of the components of the
data-generating value of the beta location param-
eter. The numerical standard errors (the limiting
standard deviations of the estimates based on the
MCMC draws) necessary for computing the RNEs
are obtained by the method of batch means, see
Section 4.2 in Tierney (1994).5

Table 1 describes the distribution of the ratio of
the MOM RNE to the RW RNE for the three ob-
jects of interest. Table entries give the frequencies
with which the RNE ratios belong to the intervals
in the head row of the table. The RNEs were com-
puted from the batches of size 100 (see footnote

4The RNE is defined as the ratio of the variance of a
moment estimate based on hypothetical i.i.d. draws to the
limiting variance of the estimate based on the MCMC sam-
ple. It indicates the number of MCMC draws required to
produce the same numerical accuracy as i.i.d. draws di-
rectly from the posterior.

5Suppose we have MCMC draws (θ1, . . . ,θL·T ) and
would like to compute the numerical standard error of
θ = ∑i θi/(LT ) as an estimator of E(θ). Divide MCMC
draws into T consecutive batches of size L. For each batch j
compute the batch mean θ j = ∑

jL
i=( j−1)L θi/L, j = 1, . . . ,T .

When the batch size L is large enough, the sequence of
batch means can be approximated by an AR(1) process.
Thus, the standard error can be approximated by

S.E.(θ)≈
√

∑(θ j−θ)2(1+ r)/[(1− r)T 2]

where r is the sample auto correlation coefficient for
(θ 1, . . . ,θ T ).

Table 1 Distribution of the RNE ratio

% of RNEMOM
RNERW

∈ (0,1) [1,2) [2,5) [5,∞)

maxm j 0.11 0.14 0.65 0.1
maxs j 0.1 0.34 0.51 0.05
π(p|m,s,λ ) 0.1 0.38 0.48 0.04

5); the results are similar for batch size 1000. The
MOM-based algorithm performs better in 90% of
the cases. This is not surprising given that the ac-
ceptance rates for the MOM independence chain
algorithm in most of the simulation experiments
were above 0.8 for s j and above 0.9 for m j. Ob-
tained efficiency improvement might not matter in
simple examples. However, for more complicated
hierarchical models, in which a finite beta mixture
is used as a flexible prior, such improvements can
make an important difference. An example of such
a model can be found in Norets and Tang (2010).

Another advantage of the MOM-based algo-
rithm is that it does not require much tuning.6 In
cases when the extent of the uncertainty about dif-
ferent mixture components is very different, which
is likely to happen when the corresponding mixing
probabilities are different, tuning the random walk
variance parameters might be complicated due to
the label switching. Identification restrictions on
mixture components such as m1 > m2 > · · ·> mM
might make it easier to tune the random walk vari-
ances. However, such restrictions are known to slow
down mixing in MCMC considerably. Thus, the
MOM-based method seems to be an efficient and
convenient alternative to the random walk algo-
rithm.

More generally, the proposed approach to con-
struction of the Metropolis-Hastings transition den-
sities can be useful for models in which the MOM
estimator is more analytically tractable than the
MLE; for example, for models involving gamma
distributions, Dirichlet distributions, and their mix-
tures.

6In rare cases, the MOM-based algorithm can get stuck
if initialized with arbitrary values of parameters and latent
variables. In these cases, we use a larger variance for the
proposal distribution on initial iterations of the algorithm.
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Appenix A: Method of moments estimator and
Metropolis-Hastings transition densities

The Metropolis-Hastings transition densities for st+1
j

and mt+1
j are constructed from the sampling distri-

bution of the method of moments estimator of s j
and m j. The idea is to pick parameters for Gamma
and Beta transition densities so that means and vari-
ances are equal to the estimated means and vari-
ances of the method of moments estimator. For a
given dataset p and a previous draw of latent vari-
ables Zt , define Nt

j = ∑i 1{Zt
i = j}.

The method of moment estimator for m j and
its approximate sampling variance are given by

m̂t
j = ∑

i:Zt
i= j

pi/Nt
j and

V̂ (m̂t
j) = ∑

i:Zt
i= j

(pi− m̂t
j)

2/(Nt
j)

2.

Conditional on mt
j (for the Gibbs sampler we need

to approximate conditional posterior of s j given
mt

j), the method of moment estimator for s j and
its approximate sampling variance are given by

ŝt
j =

mt
j(1−mt

j)

(σ̂ t
j)

2 −1 and

V̂ (ŝt
j) =

κ4− (σ̂ t
j)

4

Nt
j(σ̂

t
j)

8 (mt
j)

2(1−mt
j)

2,

where κ4 = ∑i:Zt
i= j(pi−mt

j)
4/Nt

j and

(σ̂ t
j)

2 = ∑
i:Zt

i= j

(pi−mt
j)

2/Nt
j.

Our choice of proposal densities for st+1
j and mt+1

j

are Gamma(at
j,b

t
j) and Beta(n1

t, j,n
0
t, j) respectively,

with (at
j,b

t
j,n

1
t, j,n

0
t, j) chosen to imply means and

variances identical to those estimates of ŝt
j, m̂t

j,
V̂ (m̂t

j), and V̂ (ŝt
j) calculated above. Specifically,

this amounts to choosing:

n1
t, j =

[
m̂t

j(1− m̂t
j)

V̂ (m̂t
j)
−1

]
m̂t

j,

n0
t, j =

[
m̂t

j(1− m̂t
j)

V̂ (m̂t
j)
−1

]
(1− m̂t

j),

at
j =

(
ŝt

j

)2

V̂ (ŝt
j)
, bt

j =
V̂ (ŝt

j)

ŝt
j

.

Appendix B: Expressions for φm j , φs j

The Metropolis-Hastings acceptance probability for
drawing st+1

j , φs j(s
∗
j ,s

t
j), is given by the minimum

of 1 and

π(s∗j ,s
t
− j,m

t ,λ t ,Zt |p)/qs(s∗j |mt ,Zt)

π(st ,mt ,λ t ,Zt |p)/qs(st
j|mt ,Zt)

,

where qs denotes the proposal density defined in
(5). The logarithm of this ratio can be written as

Nt
j
[

logΓ (s∗j)− logΓ (st
j)

+ logΓ (st
jm

t
j)− logΓ (s∗jm

t
j)

+ logΓ (st
j(1−mt

j))− logΓ (s∗j(1−mt
j))
]

+mt
j(s
∗
j − st

j) ∑
{i:Zt

i= j}
log pi

+(1−mt
j)(s
∗
j − st

j) ∑
{i:Zt

i= j}
log(1− pi)

−[(at
j−1)(logs∗j − logst

j)− (s∗j − st
j)/bt

j]

The Metropolis-Hastings acceptance probabil-
ity for drawing mt+1

j , φm j(m
∗
j ,m

t
j), is given by the

minimum of 1 and

π(m∗j ,m
t
− j,s

t+1,λ t ,Zt |p)/qm(m∗j |st+1,Zt))

π(mt ,st+1,λ t ,Zt |p)/qm(mt
j|st+1,Zt)

where qm denotes the proposal density defined in
(6). The logarithm of this ratio can be written as

Nt
j
[

logΓ (st+1
j mt

j)− logΓ (st+1
j m∗j)

+ logΓ (st+1
j (1−mt

j))− logΓ (st+1
j (1−m∗j))

]
+st+1

j (m∗j −mt
j) ∑
{i:Zt

i=1}
log pi

+st+1
j (mt

j−m∗j) ∑
{i:Zt

i=1}
log(1− pi)

−[(n1
t, j−1)

(
logm∗j − logmt

j
)

+(n0
t, j−1)

(
log(1−m∗j)− log(1−mt

j)
)
].
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